	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

Simple Numerical Access Protocol (SNAP) for theoretical data

Version 0.5

IVOA Technical Note 2007/03/29

This version:

Snap0.1-20060914

Latest version:

Previous version(s):

Author(s):

Claudio Gheller

Gerard Lemson

Patrizia Manzato

Laurie Shaw

Hervé Wozniak

Abstract

This specification defines a protocol for retrieving data coming from numerical simulations from a variety of data repositories through a uniform interface. The interface is meant to be reasonably simple to implement by service providers. A query defining the interesting physical models is used for searching for candidate simulations and related data. The service returns a list of the candidate simulations. The service can be further queried in order to get information on data associated to interesting simulations. Finally, data can be further selected, choosing specific quantities and extracting rectangular sub-samples from the simulated volumes. Data are be returned in VOTable simulation specific format, with support of external binary file management and data staging.

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than “work in progress”.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.
Contents

31
Introduction

52
Requirements for Compliance

63
Simulation Discovery and Selection

64
Subset Selection

75
Snap request

85.1 Input

105.2 Output

146
Data Staging

167
Data Delivery

168
Service Registration

16Appendix A: Binary File Formats

16References

1 Introduction

This specification defines a prototype standard for retrieving theoretical data from a variety of astrophysical/cosmological simulation repositories. In this context theoretical data is defined the outcome of different kinds of numerical applications, like dynamical simulations, semianalytical models, montecarlo simulations etc.

Simple Numerical Access Protocol (hereafter SNAP) defines a standard to access numerical simulation outputs organized in the following manner. For each timestep, the information must be sampled in a 3D space, hereafter referred to as a “volume”, with the position and extent of the volume defined within a Cartesian coordinate system. The sampling can be regular (e.g. mesh) or irregular (e.g. particle or adaptive mesh position). Every mesh-point/particle in the 3D space hosts the same physical quantity (i.e. mass, density, velocity, etc) for each timestep. Ultimately, the sampling volume does NOT necessarily need to be geometric or even 3D. It could be any N-dimensional set of variables that can be used to perform a meaningful SNAP operation. Furthermore, also conditioned queries could be supported (e.g. extract data from a given region with temperature higher than a given value).
However, for simplicity, we start dealing with geometric 3D operations.

Theoretical data, mimicking observational data, can be classified according to the following hierarchy:

· Level 0: direct, raw, output of the simulation. Examples are the coordinates and velocities of files in an N-Body simulation, the density field on the computational mesh of a Jet simulation etc.

· Level 1: data extracted or derived from the simulation results. For example, the coordinate of the points that build up a galaxy cluster extracted from a cosmological simulation using a friend of friends algorithm, or the density field calculated smoothing the particle masses on a mesh.

· Level 2: results that have been elaborated from Level 0 and Level 1 data after an analysis process. Examples are projected maps, statistical functions, Virtual Telescope applications.

The SNAP protocol deals with Level 0 and Level 1 data. It specifies the following services:

· retrieval of the entire simulation outcome (the particle positions and velocities within the simulation box, or the physical quantaties at each grid point) – known as a snapshot – at one or more timesteps.

· retrieval of a specific subset or subvolume of a simulation (e.g. all the particles/grid-points within a certain region)

The SNAP protocol is designed primarily as a "data on demand" service, with dataset created on the fly by the service given the position and size of the desired output dataset as specified by the client. This is not a simple task for various reasons. First, simulations adopt specific units and coordinate systems, which depend on the nature of the problem, the characteristics of the algorithms and their implementation. Furthermore, there is no equivalent to a “position in the sky” as for astronomical images and therefore no absolute common reference frame. Furthermore, simulation outputs can be represented by a wode variety of completely different data objects. For example, the output can consist in a set of particles in a given volume, where each particle has its physical position and a set of associated scalar and vector quantities, like velocity, mass density, temperature etc. On the other hand, mesh based simulations describe their data as discrete fields defined on a regular or adaptive mesh. The SNAP protocol has the goal of providing a uniform description of the selection service trying keep it simple and, at the same time, to include as many different kind of simulations and data as possible.
In operation, SNAP represents a negotiation between the client and the data service. Preliminarily, the client searches for all the simulations available for a certain set of physical parameters (for example, cosmological simulations of a LCDM universe) and the service returns a list, encoded as a XML file structured according to a data model defined in this specification (possibly VOTable), of the simulations that match the request. The client then examines the result to determine if they are interested in any of the available hits and possibly iterates with the service to refine the query. As soon as the interesting set of simulations is determined, the user can proceed with the SNAP operation. The dataset, quantities and, possibly, post-processed data, with all their basic features (units, size, dimensionality etc.) associated to the selected simulations, are proposed to the client. At this point, the end user can select some of the dataset, specify the quantities he/she is interested in and extract a sub-sample specifying a rectangular or spherical region inside the computational volume. Data (particles or mesh points) which fall inside the selected region are extracted and the result is delivered to the user as a VOTable. Since data size is usually large, specific care must be given to performance issues, both in the elaboration and in the download phases. This is even a more serious issue noticing that data collections are often distributed and the client may query multiple services simultaneously.

In summary, we can identify five main stages for the SNAP service.

1. Selection of simulations and data (Simulation Selection, section 3)

According to the results of a simulation discovery procedure (not part of the SNAP protocol) select potentially interesting simulations.
2. Identification of subset of interest (Subset Selection, Section 4)

The user identifies a subset of the full simulation data which is of interest.

3. Snap request (Section 5)

Send to the server the selection parameters for the Snap operation

4. Data staging and delivery (Section 6 and 7)

Metadata are delivered to the client as a VOTable or a more general XML file. Data are staged and delivered (possibly after some time, needed for extraction) via HTTP, FTP etc. as binary files + XML descriptors.

Delivery of VOTable and binary data files can be in two separated stages.

5.Service registration (Sections 3 and 8)

SNAP services need to be published in available registry. Registry inquiry must be performed according to the SNAP data model

2 Requirements for Compliance

The keywords "MUST", "REQUIRED", "SHOULD", and "MAY" as used in this document are to be interpreted as described in RFC 2119 [34]. An implementation is compliant if it satisfies all the MUST or REQUIRED level requirements for the protocols it implements. An implementation that satisfies all the MUST or REQUIRED level and all the SHOULD level requirements for its protocols is said to be "unconditionally compliant"; one that satisfies all the MUST level requirements but not all the SHOULD level requirements for its protocols is said to be "conditionally compliant".

Compliance with this specification requires that a SNAP service is maintained with the following characteristics:

1. The service MUST support a Simulation Selection service as described in section 3 below.

The SNAP service MUST provide tools to select the datasets and the regions of interest and proceed with following steps of the SNAP procedure.
2. The SNAP service MUST support a getUnits method (or getFields method… to be discussed)

This method allows clients to get the list of units associated to the available fields.

3. The Sub-Volume Extraction method SHOULD be supported as defined in section 4 below. If supported, a getThumb method MUST be available

This method allows clients to retrieve data from a spatially defined sub-volume of the simulation box. The client determines the rectangular or spherical region within the simulation, the bounds and scale (i.e. units) of which are specified in the simulation metadata, and the service returns the simulation data contained within this region. The service SHOULD use a staging method (section 6) to return the particle file, as extracting a sub-sample of particles or grid points from a larger simulation box is likely to be a time-consuming process and would thus require some kind of caching.

4. The setSnap method MUST be supported as defined in section 5 below

This method allows clients to submit a SNAP operation

5. The data retrieval (getSnap) method MUST be supported as defined in section 7 below.

This method allows clients to retrieve single simulation snapshots and cutouts

6. The SNAP service MUST be registered by providing the information defined in section 8 below.

Registration allows clients to use a central registry service to locate compliant simulation access services and select an optimal subset of services to query, based on the characteristics of each service and the simulation data collections it serves.

7. Job management request methods, getSnapInfo, cancelSnap, MAY be supported.

These methods allow users to inquire about the status of a submitted request and, possibly, to cancel it.

3 Simulation Selection an Units

Available simulations are returned as the result of a query based on a set of physical and technical parameters which to some degree specify the type of simulation of interest to the user. These parameters can be general or specific to the discipline or research field of interest. The details of the search criteria and execution are not part of the SNAP protocol implementation and must be defined in a different document. However, the SNAP service MUST provide tools to select the datasets of interest and proceed with following steps of the SNAP procedure (described in the next sections).

Data are stored in the archives with specific units, which can be retrieved by the client by a getUnits() method. The client can present the data in any suitable unit. However, the client MUST convert any quantity in server-side units before submitting any request. E.g., the center of a computational volume of a N-body cosmological simulation can be specified in Mpc by the client, since this is familiar to the user. However, particle coordinates could be represented by the simulation code in the [0, 1] range. Therefore, the center position must be converted by the client to this internal representation.

In order to submit a getUnits request, the following parameters must be specified and passed to the server:

DATASERVICE and DATASOURCE
In order to specify the service and the data object as described in section 5.1.

FIELDS

In order to specify the quantities for which we need units. The parameter is described in section 5.1.
The getUnits method returns a string in which units are listed in the same order of the quantities specified in the FIELDS parameter, e.g:

FIELDS=”xposition,yposition,zposition,velocity,temperature”

UNITS_RESULT=”Mpc,Mpc,Mpc,km sec-1,K”

Standard units and their representation is described elsewhere (…).

Alternatively a getFields() method could be implemented, which return both all the available fields and the corresponding units (in this case some unnecessary information could be communicated).

3.1 SNAP Data Model

For now, please refer to the SNAP data model at:

http://www.ivoa.net/twiki/bin/view/IVOA/IVOATheorySimulationDatamodel
4 Subset Selection

The Snap request must be submitted according to the prescription given in section 5. If data cutout is supported, the service MUST provide tools to enable the client to specify the size and position of the subset. Geometrical parameters are particularly tricky to set, since the user has to know where the interesting regions are in advance. Therefore a thumbnail of the data could be necessary to proceed with data discovery. The thumbnail is a representative, but much smaller (with respect to the data size), realization of the whole dataset. It could be:

· projections of the computational box in the three coordinate directions (images),

· a random or decimated sample of the dataset (in particular for point like data),

· a reduced resolution realization of the dataset (e.g. averages over neighboring cells of a computational mesh)

· a “clever” selection of regions according to specific criteria (e.g. “overdense” regions) implemented by proper algorithms (which are not subject of this work).

· …

The specific details of these services depends on their implementation and they must be published to the registry. However, a minimal set of methods and interfaces can be defined.

A getThumb web method MUST be implemented. The input of this method is a couple of DATASERVICE, DATASOURCE parameters (see section 5), which identifies the dataset of interest. The output is a VOTable with the same features of that described in section 5.2. As for the results of the Snap procedure, thumbnails data are stored in external binary files. However, these files are immediately downloaded (together with the VOTable, as a response to the web method), since their size is small.

5 Snap request

The main target of the SNAP service is the access to the raw data from a simulation, selected by a general Simulation Query, described in section 3. The SNAP service in general provides the following functionalities:

1. Extraction of a subset of data properly selected (data cutout)
2. Storage of the associated metadata in a VOTable (see later in this section) delivered to the client

3. Staging of the extracted data and their delivery to the client via http, ftp etc. (see section 6 and 7)
In principle, the extraction phase (1) could be performed using any of the set of N parameters that characterize the simulation. However, for simplicity, in a first stage of development, we will focus on geometric selections, allowing the user to select a either rectangular or spherical sub region of the entire computational volume, without having to download the whole dataset. Of course, it is still possible to retrieve the complete dataset. This can be seen as a degenerate cutout request, with a region of interest which covers the entire computational volume. Notice that this action is not just a simple download, since action 2 is still performed.

In order to submit the Snap request, a setSnap() web method (see below) MUST be implemented, with parameters defined as follows:

To select the region of interest, only geometric parameters are necessary. For a rectangular region, the user has to specify the center of the box and the length of each of its sides. For a spherical selection, center and radius of the sphere are required. One or more variables of a given snapshot can be selected in the same cutout operation.

For regions that intersect the boundary of the simulation box, the service has the option of applying different types of boundary conditions. Possible solutions are truncated boundary conditions (the sub-box is truncated at the box boundaries) and periodic boundary conditions (if applicable). The resulting file will be made available through an access URL, possibly using the Snapshot staging method, notifying the client when the sub-volume extraction has been completed and the resulting particle file is available for retrieval. This appears to be a necessary feature due to the rapidly increasing size of data files associated to the increasing availability of computing power. Consequently, the processing time to extract requested volumes could be high, larger than a typical working session. Furthermore it is important to stress that, differently from what generally happens when retrieving observational images and data, simulation data are usually large and it is not convenient to retrieve them via http with some kind of encoding for the binaries (e.g. base64). This is, in fact, extremely expensive, both for CPU (time spent in encoding and decoding data) and for size (the encoded file is larger than the original one).
5.1 setSnap input

In order to submit a SNAP request, the following parameters must be specified and passed to the server.

1. Region of interest

An input Sub-Volume query must consist of an x,y,z position in the box, plus the side lengths (or radius) of the rectangular (spherical) region surrounding this point. These quantities MUST be specified in the units published by the server

The service MUST support the following two parameters:

POS

The position of the center of the region of interest, expressed as a set of three coordinates in fractions of the corresponding box side. A comma should delimit the three values; embedded whitespace is not permitted. Example: "POS=0.3,0.25,0.9". A NULL value represents the center of the whole box (0.5,0.5,0.5).

SIZE

The length of the sides (or the radius) of the region. The region may be specified using either one or three values. If only one value is given it represents the radius of a sphere. If three values are provided (all the same for a cubic box), a rectangular subbox is defined. The format of the SIZE parameter is the same as that for POS. Example “SIZE=0.2,0.5,0.3”. A special case is SIZE=NULL, which represents the whole box.

In addition, the service MAY support the following parameter specifying the adopted boundary conditions:

BOUNDARY

This parameter can have three values, one for each coordinate direction. Possible values are:

· TRUNC – if the interesting region exceeds the computational box, it is resized at the box boundary

· PERIODIC - if the interesting region exceeds the computational box, data are selected from the opposite side of the box

Registry metadata of the service indicates what kind of boundary conditions are supported.
2. Fields of interest

The user can specify the physical quantities he is interested in, which can be a subset of the available ones.
FIELDS

The service MAY support an optional parameter with the name FIELDS, the value of which is a comma separated list of field names corresponding to the data elements the simulation can return. If the parameter is not provided or it is set to NULL all fields are returned. The fields name are published by the server (see…). Example: “FIELDS=Density,Temperature,Velocity_x”..

3. Data sources

Simulations outputs are stored in files. This files can be indicated by a reference name which identify unambiguously the data source. This link can be provided directly by the client, by registries or/and by the middleware software which a distributed archive is built on (e.g. SRB, OGSA-DAI…). The data source can be also a database. However, this does not imply anything on the service interface implementation. The complexity of the database access is hidden behind the setSnap operation and its implementation. But this is up to the service provider.
The service id MUST also be specified.

A SNAP operation MUST refer to a single data source. Multiple sources cutouts, like for various time steps of the same simulation, cannot be supported by the protocol. Their implementation is up to the client, as, for example, sequences of single source requests with same subbox and fields. The client must verify that such operation is possible and/or meaningful.

DATASERVICE

Identification of the data service (to be better specified)
DATASOURCE

The service MUST support an optional parameter with the name DATASOURCE, the value of which is single data source reference. The DATASOURCES parameter MUST be set.

Examples:

“DATASOURCE=/scratch/my_directory/myfile1.bin”

“DATASOURCE=myfile2.ref”

4. File Format

The SNAP service deliver its results as VOTables with associated binary files.

The service MAY support a parameter with the name FORMAT to indicate the desired format or formats of the data referenced by the output table. The value is a comma-delimited list where each element can be any recognized MIME-type.
Possible formats are:

data/raw_tabular

data/raw_sequential

data/votable

data/hdf5

data/fits

to be discussed further.
5. Service-Defined Parameters.

The service MAY support additional service-specific parameters. The names, meanings, and allowed values are defined by the service. The names need not be upper-case; however, they should not match any of the reserved parameter names defined above.
5.2 setSnap output

The output produced by a SNAP cutout request is a VOTable, an XML table format, returned with a MIME-type of text/xml, plus an external binary file with the extracted data. The VOTable is characterized by the following items:
1. The VOTable MUST contain a RESOURCE element, identified with the tag type="results", containing one or more TABLE elements with the metadata results of the setSnap operation. The VOTable is permitted to contain additional RESOURCE elements, but the usage of any such elements is not defined here. If multiple resources are present it is recommended that the query results be returned in the first resource element.

2. The VOTable MUST contain a DATASERVICE parameter which identifies the used service.
3. The VOTable MUST contain a REQUEST_ID parameter which identifies uniquely the job request on the service. REQUEST_ID is a 4 bytes integer.

4. The VOTable MUST contain a REQUEST_STATUS parameter which can be Ok or Rejected. In this last case all the other fields of the VOTable are not present.

5. TABLE contains different species extracted from the dataset. Species can differ either by their geometrical representation (e.g. particles, regular meshes, AMR meshes…) or in their “physical meaning” (e.g. star particles vs. dark matter particles). All the FIELDS in a table have the same number of elements, specified by the arraysize parameter. This parameter set also the geometry of the quantity. E.g. arraysize=”N” represents a point like quantity; arraysize=”NxMxS” represents a grid based variable. For point like quantities arraysize is NOT mandatory, since often it cannot be calculated on-the-fly. Resulting data FIELDS are stored one after the other in a single binary file, in the same order they appear in the VOTable.
6. Each TABLE MUST contain FIELDs where the UCDs that follow have been set. FIELDS refer to the variables stored in the external binary file.

7. Variables must be scalars. Vectors and more generally, multidimensional quantities, are not supported. This means that each FIELD represents a scalar value. E.g. temperature of each point, x coordinate of a particle.

8. Each FIELD must specify the datatype and the unit of the variable. Furthermore name, ID, and ucd has to be set. The ucds for simulations are still in progress, therefore we do not enter in more details.

9. The acref binary data file reference is specified in a DATA section, according to the rules defined in other documents (e.g. SIAP specification)

Other parameters may be supported according to the services offered by the data provider.

6 Data Staging

By Data Staging we refer to the processing the server performs to retrieve or generate the requested simulation volumes and cache them in online storage for retrieval by a client. Staging is necessary for large archives which must retrieve simulation data from hierarchical storage, or for services which can dynamically extract subvolumes, where it may take a substantial time (e.g. minutes or hours) to retrieve the particles in the relevant region of the simulation box. Issuing a staging request for a set of simulation subvolumes (e.g. for a set of small cubes randomly placed in a simulation box) also permits large servers to optimize subvolume extraction, for example to take advantage of parallelization for large requests.

The snapshot staging service is optional for the simulation server. If staging is not implemented, data should be immediately available for retrieval (URL direct to file). The availability of this function is communicated to the registry services.

When staging of data is necessary, the technique used is to stage data on the server for later retrieval by the client. The data is only staged for a period of time and is eventually deleted by the service. The getSnap method (see section 7) is identical whether or not staging is used. The service can proceed to generate the simulation sub-volume regardless of the state or accessibility of the client.

As soon as staged data are available at the given URL, the user can start the download procedure. The user can be informed of the availability of the data following two different approaches:

1. The client searches for the data on the service (e.g. reload a web/ftp page).

2. The service searches for the client and, if present, sends information to it.

The first approach is simpler. In its most strightforward implementation, it simply consists in making the client reload the data URL, to see if data are there.

In the second approach, the staging mechanism should provide a messaging capability. The service broadcasts messages to subscribing clients whenever a staging (processing) event occurs, such as when the sub-volume extraction has been completed and is available for retrieval. Service generated messages can also be used to pass informational or diagnostic messages to clients as processing proceeds. This type of messaging is asynchronous and one way: the service broadcasts messages to subscribing clients as things happen, whereas clients send requests to the service to invoke web methods. For example, to initiate staging, subscribe to staging-related messages, or abort a staging operation in progress, the client sends a request to (invokes a web method provided by) the service.

Snap is not just a search-and-download service, but it requires also running processes and, possibly, managing them (see later in this section). Therefore the authentication of the client should be required. This is strictly required for approach 2, in which the user must be detected and identified by the service. However, authentication should be always necessary for security and privacy reasons: access to the services should be granted only to “trustable” users with proper privileges (some data could be available only for specific communities etc.) and extracted data should be accessible only to the user who performed the request.

Authentication could be on a username-password basis or on some more sophisticated methods, like certificates. This choice is up to the service provider. Authentication allows the user to use the scheduling/batch system which is implemented by the service provider. This system set all the policies of access to the resources (requests pipeline, multiple requests from the same user, CPU time limits, accounting). Obviously, also these choices are up to the provider, who is only required to notify all the available features to the registry service.

Since the Snap request is staged, the provider should support at least two basic operations:

· Job monitoring

· Job cancellation

The specific implementation of the two operations depends on the adopted service technology.

Both operations use the SERVICE and REQUEST_ID parameters written in the VOTable. They are called using proper web methods:

· getSnapInfo(SERVICE, REQUEST_ID, SNAPINFO)

· cancelSnap(SERVICE, REQUEST_ID, SNAPINFO)

The getSnapInfo method returns a SNAPINFO string with the following information: STATUS (Idle, Hold, Cancelled, Running, reJected), SUBMISSION_DATE, other (up to the service provider, specified to the registry). The cancelSnap method returns a SNAPINFO string that can have the values “Ok” or “Rejected”.

Other services can be implemented and registered by the provider.

7 Data Delivery

The getSnap(acref, SERVICE, STATUS) web method allows a client to retrieve a single raw simulation file given the access reference (acref) in the result VOTable. The file can contains more than one variable and can be in the formats defined in Section 5. The files can be downloaded using http, ftp, grid ftp protocols (or any other useful protocol). All the metadata about the content and the structure of the data file is stored in the associated VOTable (see Appendix A).

The getSnap method returns a STATUS string which can be Ok, Rejected or Defferred (if data are not yet available).

XML header files are stored as well and they are downloaded together with the binary file using the same getSnap method.

8 Service Registration

The following features and methods MUST be published to the registration service.

Appendix A: VOTable examples

1. VOTable for the velocity field of a fluid on a fixed 3D mesh
[GL – We still need a proper way I guess of indicating what the spatial dimensions are for a representation like this. FITS has its WCS system for implicitly specifying the spatial coordinates of a multidimensional array. Is something like this in existence for VOTable ? We need to inquire.]
<RESOURCE name="myVectorField" type="results" >

 <DESCRIPTION>Velocity Field from N-Body run</DESCRIPTION>

 <INFO name="QUERY_STATUS" value="OK"/>

 <TABLE name="VelocityField" ID="Vel" order="sequential">

 <FIELD name="vx" ID="vx1" ucd="phys.veloc;pos.cartesian.x" datatype="float"

 arraysize="41x41x41" unit="km/s" geometry="mesh" />

 <FIELD name="vy" ID="vy1" ucd="phys.veloc;pos.cartesian.y" datatype="float"

 arraysize="41x41x41" unit="km/s" geometry="mesh" />

 <FIELD name="vz" ID="vz1" ucd="phys.veloc;pos.cartesian.z" datatype="float"

 arraysize="41x41x41" unit="km/s" geometry="mesh" />

 <DATA>

 <BINARY>

 <STREAM href="file:///scratch/myhome/test.bin"/>

 </BINARY>

 </DATA>

 </TABLE>

 </RESOURCE>

</VOTABLE>

2. VOTable for the velocity and position fields of particles from an N-Body simulation

<RESOURCE name=myParticles type="results">

 <INFO name="QUERY_STATUS" value="OK"/>

 <TABLE name="Particles" ID="NBody" order="tabular">

 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"

datatype="float" arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"

datatype="float"arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"

datatype="float"arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="vx" ID="vx1" ucd="phys.veloc;pos.cartesian.x"

datatype="float"arraysize="100000" unit="km/s" geometry="particles" />

 <FIELD name="vy" ID="vy1" ucd="phys.veloc;pos.cartesian.y"

datatype="float"arraysize="100000" unit="km/s" geometry="particles" />

 <FIELD name="vz" ID="vz1" ucd="phys.veloc;pos.cartesian.z"

datatype="float" arraysize="100000" unit="km/s" />

 <DATA>

 <BINARY>

 <STREAM href="file:///scratch/myhome/test.bin"/>

 </BINARY>

 </DATA>

 </TABLE>

 </RESOURCE>

</VOTABLE>

3. VOTable for the temperature field of a mesh based quantity and the position of N-Body particles extracted from the same spatial region.

<RESOURCE name=myMixedData type="results">

 <INFO name="QUERY_STATUS" value="OK"/>

 <TABLE name="ParticlesAndMesh" ID="NBody" order="sequential">

 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"

datatype="float" arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"

datatype="float"arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"

datatype="float"arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="temperature" ID="temp" ucd="phys.temperature;pos.cartesian.x"

datatype="float"arraysize="41x41x41" unit="K" geometry="mesh" />

 <DATA>

 <BINARY>

 <STREAM href="file:///scratch/myhome/test.bin"/>

 </BINARY>

 </DATA>

 </TABLE>

 </RESOURCE>

</VOTABLE>

An alternative here is:

<VOTABLE>

 <RESOURCE name=myMixedData type="results">

 <INFO name="QUERY_STATUS" value="OK"/>

 <TABLE name="Particles" ID="NBodyParticles" order="sequential">

 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"

datatype="float" arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"

datatype="float"arraysize="100000" unit="Mpc" geometry="particles" />

 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"

datatype="float"arraysize="100000" unit="Mpc" geometry="particles" />

 <DATA>

 <BINARY>

 <STREAM href=_mesh"file:///scratch/myhome/test_particles.bin"/>

 </BINARY>

 </DATA>

 </TABLE>

 <TABLE name="Mesh" ID="NBodyMesh" order="sequential">

 <FIELD name="temperature" ID="temp" ucd="phys.temperature;pos.cartesian.x"

datatype="float"arraysize="41x41x41" unit="K" geometry="mesh" />

 <DATA>

 <BINARY>

 <STREAM href="file:///scratch/myhome/test.bin"/>

 </BINARY>

 </DATA>

 </TABLE>

 </RESOURCE>

</VOTABLE>

[GL – Do we need an example of an “ordinary” tabular VOTable as well ? Something like

<RESOURCE name=myParticles type="results">

 <INFO name="QUERY_STATUS" value="OK"/>

 <TABLE name="Particles" ID="NBody" >

 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"

datatype="float" unit="Mpc" />

 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"

datatype="float" unit="Mpc" />

 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"

datatype="float" unit="Mpc" />

 <FIELD name="vx" ID="vx1" ucd="phys.veloc;pos.cartesian.x"

datatype="float" unit="km/s"/>

 <FIELD name="vy" ID="vy1" ucd="phys.veloc;pos.cartesian.y"

datatype="float" unit="km/s" />

 <FIELD name="vz" ID="vz1" ucd="phys.veloc;pos.cartesian.z"

datatype="float" unit="km/s" />

 <DATA>

 <BINARY>

 <STREAM href="file:///scratch/myhome/test.bin"/>

 </BINARY>

 </DATA>

 </TABLE>

 </RESOURCE>

</VOTABLE>

]

Appendix B: Binary File Formats

To be done…
References

[1] R. Hanisch, Resource Metadata for the Virtual Observatory , http://www.ivoa.net/Documents/latest/RM.html
[2] R. Hanisch, M. Dolensky, M. Leoni, Document Standards Management: Guidelines and Procedure , http://www.ivoa.net/Documents/latest/DocStdProc.html
