
Data Model for Quantity
Version 0.23

IVOA DM WG Internal Draft

2004-05-17

Working Group: http://www.ivoa.net/twiki/bin/view/IVOA/IvoaDataModel
Editors:
Jonathan McDowell, David Berry, Patrick Dowler, Brian Thomas

Authors:
IVOA Data Model Working Group

Abstract

This document defines a Quantity data model.

Status of this document

This is a Working Group Internal Draft only. It is inappropriate to reference
this document.

Acknowledgments

Members of the IVOA Data Model Working Group, including representatives
of the US NVO, Astrogrid, Starlink, the Canadian VO, and the AVO have
contributed to the present draft.

Contents

1 Introduction and Scope 1

2 Use Cases 3

3 Requirements 3

1

4 Quantity Concepts 4
4.1 Phenomenon . 4
4.2 Value . 5
4.3 Accuracy . 5
4.4 Quality . 5
4.5 Array Axes . 5
4.6 Coordinates . 5
4.7 Frames . 6
4.8 Coordinate Systems . 6
4.9 Units . 6
4.10 Transformation . 7
4.11 Mapping . 7
4.12 Description . 7
4.13 Data Type . 7
4.14 Associated Metadata . 8

5 BasicQuantity Model 9

6 Proposed Interface Model 10
6.1 Interfaces . 13
6.2 Interface descriptions . 15

6.2.1 Frame . 15
6.2.2 Mapping . 15
6.2.3 BasicQuantity . 15
6.2.4 CoreQuantity . 16
6.2.5 StandardQuantity . 16
6.2.6 Locator . 16

6.3 Examples . 17

7 XML Serialization 19
7.1 Basic Quantity . 19
7.2 CoreQuantity . 20
7.3 StandardQuantity . 21
7.4 Notes on XML aspects of the serialization 22
7.5 Strings and string arrays in XML 23
7.6 XML instance examples . 24

1 Introduction and Scope

In this document we define a VO data model to describe the semantic content
of sets of astronomical data values and their most closely associated meta-
data. The model may be used by aggregation or extension in higher level
models describing astronomical datasets; the serializations of these models
will allow data providers to consistently describe their data to the VO and
the implementations of the data model classes in software will simplify the
development of tools to manipulate VO data.

2

Astronomical data consists of string and numerical (floating point and
integer) values and arrays of such values, arranged and related in complicated
ways. Any numerical value must be associated with a physical concept (e.g.
‘radial velocity of a spectral line’), which can be tagged as a UCD, and with
a physical unit (e.g ‘km/s’), by which we mean to include nonstandard cases
such as ‘dimensionless’ and ‘pixel’.
In this document we define a set of interfaces of modest complexity to

an object called Quantity and to some related objects. Our intent is that
the eventual VO data access layer will be coded in terms of these interfaces.
Higher level objects will also be defined; we do not require Quantity to do
everything. In particular, we are developing a model provisionally called
Observation to describe a ‘complete’ (in a sense to be defined) dataset.
By choosing to define interfaces, we concentrate on what one can do and

how one uses a Quantity, rather than on how they are or might be stored.
Storage is, of course, more than just a detail of the numerous implementa-
tions that are sure to follow such a design - the external serializations are the
core standards that give us interoperability. Nevertheless, by aiming at an in-
terface of moderate complexity as our core definition, we enable applications
software to have a relatively simple target to develop against, at the expense
of quantity implementors, who will see some overhead cost when the data
are simple and they must still implement methods that do nothing. The cost
of leaving something out of Quantity is that applications which need that
something will have to implement a heavier object that contains it and the
extra feature will not be portable as an instance of quantity.
However we also present an interface to BasicQuantity, intended as a

simple, lightweight version that is useful for many applications.
The goal is to define interfaces such that the most frequent uses need most

of the features and don’t need other objects. If every time you operate on a
value, you will be checking for an error (even if it might not be there), then
the code will be simpler if value and error are in the same object. The second
trick is that if a dataset or an application deals with a set of different objects
in much the same way, it may be worth seeing if these different objects can
be generalized as cases of a single thing. This is the motivation for combining
numeric and string quantities.
The Quantity interface describes a way to access a physical measurement

which may be:

• A single datum with a UCD and units

• A single datum with errors, UCD and units

• An array of data values with errors and common units

• array data with alternative representations and coordinate systems.

2 Use Cases

This is a summary of the use cases that are directly relevant to the design
of a quantity interface. The complete collection of quantity use cases will be

3

collected in a separate document. There is a great deal of variety in the scope
of use cases and in how they combine various usage patterns to accomplish
the overall goal. All of the use cases we have looked at generally indicate one
or more of the following use patterns, in some combination:

• exchange data across the network

• combine data from different sources

• enable search/exploration/discovery

• enable analysis

The use cases include:

• Describing a scalar value and its context

• Manipulating and combining arrays while preserving units and checking
compatibility (in the sense of UCDs)

• Describing the position of a pixel (cell) on an array axis

• Accessing data which may be either an array of explicit values or the
values of a parameterized function.

• Comparing the contexts of values separately from the values themselves

3 Requirements

The use patterns described above appear to correspond to the following re-
quirements1 on the quantity model:

• a quantity instance must be serializable and standardized so it can be
exchanged

• quantity must be flexible enough to contain/describe data from differ-
ent sources in a uniform way so quantities can be integrated

• tools (quantity consumers) must be able to interact with multiple sources
(data producers) at the same time

• quantity must have a uniform interface that can be referenced symbol-
ically so that searching can constrain any/all components

• quantity must have a uniform interface that can be invoked on instances
to extract data and metadata

1Requirements are not use cases. Requirements are derived from use cases and are thus
the design constraints that are deduced from the use cases. Each use case should require
one or more features. If a use case has no corresponding feature(s), it is not possible to
accomplish that task. If a requirement has no corresponding use case, it is unnecessary
and should be removed.

4

• quantity should support both explicit values and at least a simple set
of functionally defined values.

• quantity should describe arrays of values sharing the same physical
description.

• quantity should support the ability to describe the same data in several
different coordinate systems.

• quantity should provide a Frame object which describes the context of
values without containing values themselves

• The descriptions of coordinate axes should allow explicit listing of axis
coordinate values (rather than an algorithmically defined or regularly
spaced axis) without excessive overhead

• coordinate axes should support the concept of mappings as proposed
by the Starlink team

• Coordinate descriptions on compound axes (the RA,Dec case) should
be supported.

4 Quantity Concepts

The following concepts are involved in our quantity model. They are essen-
tially the various nouns that people use in describing use cases.

4.1 Phenomenon

The Phenomenon is the thing being measured, reported, predicted or dis-
cussed. People tend to use the terms property or attribute as well since they
are typically talking about a property or attribute of something. For ex-
ample, the brightness of a galaxy is a property or attribute (of the galaxy);
brightness is a phenomenon. It is useful at the modelling stage to keep this
distinction in mind, even though in practice (i.e. software) we rarely if ever
deal with the phenomenon by itself. If one thinks of a quantity as a name-
value pair, this is the name part and its semantics are given by the UCD
system.
It is useful to be able to distinguish between the temperature of the source

(the star is at 5000 degrees) and the temperature of the instrument (the
CCD was at 220 K). The VO UCD group is developing a language in which
to capture such distinctions, and will allow us to distinguish between the
general phenomenon (temperature), the subject of the phenomenon (star),
and the qualified phenomenon (temperature of the star).

4.2 Value

The concept of value is the core of any quantity model. This is what con-
sumers and producers of quantities are (and have been) trying to convey.

5

The task of a quantity model is to add just enough extra context to a value
(by aggregation) that it is fully specified and can be fully understood. By
value, we also include arrays of values.
However, there are use cases which involve the context without the value.

The Frame object described below handles this case.

4.3 Accuracy

We use the term accuracy to describe numbers which are needed to decide
if the values in two compatible quantities are different. This includes errors
(uncertainties), upper limits, and possibly pixelization size and instrumental
resolution. There are many types of errors (ways to represent error): absolute
error, relative error, systematic and random error, etc. Each type of error
must have rules or operations that specify the correct way to use them in
calculations.

4.4 Quality

Quality is similar in use to error or uncertainty, except that quality is gen-
erally not numeric. The general idea is that quality can be used to filter
(include or exclude) quantities from further consideration, but it does not
otherwise impact calculations.

Note: One could convert quality flags to weights and thus use them within

some types of calculations. However we do not model this here.

In this document our accuracy and quality models are stubs, developed
only enough to define their interface to Quantity. At present we assume that
Quality is handled as a kind of Accuracy.

4.5 Array Axes

If a quantity has more than one value, access to it may be described by a
simple list, or by an n-dimensional array index (imposing an array structure
on the set of values). The quantity values thus become a function of n
integers. Each of these n mathematical dimensions is called an array axis.
(There may be more than one such organization of the pixels for a given
quantity; e.g. both 1D, 2D and 3D arrangements of the values.) The word
‘pixels’ here is taken to include ’samples’ and ‘cells’, there is no intent to
imply a regular array in an underlying physical (detector).

4.6 Coordinates

A array axis (dimension of the array index) or (e.g. in the case of pro-
jected spherical coordinates) a set of array axes, can be associated with a
phenomenon (and a Quantity), in the sense that the quantity values now
become a function of n parameters (independent variables), each of which
can take any of the values a Quantity can take. These parameters are called
coordinates. For example, a quantity containing an array of flux values might

6

be associated with a time coordinate if it is a time series, or a wavelength
coordinate if it is a spectrum.
More than one such set of associations can be applied to a quantity. For

example, a 3D cube might have RA, Dec, time coordinates and also focal
plane position/exposure number coordinates.
The array axes themselves constitute a special case of such coordinates.

The function that takes an array index and returns the coordinate value is a
special case of a mapping (see below).
For some types of quantities - specifically those using string data types

(e.g. galaxy classification) the coordinate is more like an enumerated type
that lists all the allowed values. Proper names of astronomical objects are
also values taken from a standard list (for example, M31 is a name from the
Messier Catalog). The same sort of pattern applies to positions (X,Y is a
value in the J2000 equatorial coodinate system).

4.7 Frames

Frames give the context of values, either the quantity values or the values
of the phenomena tied to axes. Frames include information about units,
coordinate zero points, and identification of coordinate systems (some of
which are parameterized, e.g equatorial systems parameterized by equinox,
epoch and reference system). The frame would include the phenomenon, but
not the values.
When there is more than one axis and each has an independent frame,

we have a compound frame made of combining the individual frames.

4.8 Coordinate Systems

We use the phrase ’coordinate system’ to indicate metadata needed to de-
scribe the context of values which go beyond simple units. Familiar examples
of coordinate systems are celestial coordinates, and velocity and spectral co-
ordinate systems.

4.9 Units

A unit is a component of a frame that defines the measuring rod used for
a particular value. Units are about size rather than zero point (there are
a few problematic cases like ’degrees Celsius’); for instance in a celestial
coordinate system, choice of units (degrees or arcseconds) is orthogonal to
choice of origin (barycenter, Earth, etc) and choice of orientation (J2000
ICRS).

4.10 Transformation

A transformation maps values expressed in one frame to values expressed
in another frame. We consider only one-one and many-one transformations;
one-many transformations are outside the scope of the present discussion.

7

We don’t define an explicit Transformation class, its properties are including
in Mapping (below).

4.11 Mapping

A mapping is either the pairing of a transformation and its inverse, or just
the transformation if its inverse would be one-many. It represents the full
information about the connection between two frames.
A special case of Mapping is an explicit set of values - an array of real

numbers is a look-up mapping from the integers to the reals. So, we can
unify the concepts of Mapping and Values, allowing us to use one whereever
the other might appear as a ‘rule to get values’. In the case of a Quantity for
which alternate represenations are provided - say, an array of Wavelengths
which we also want to be accessible as a set of Frequencies - our overall
Quantity might consist of two CoreQuantities (see below), one of which,
WavelengthCQ, is the wavelength Values together with the wavelength Frame
information, while the second, FrequencyCQ, is the wavelength-to-frequency
Mapping togther with the frequency Frame information. The unification of
the Values array with the Mapping idea lets us treat WavelengthCQ and
FrequencyCQ as the same kind of thing, without us caring which of them
holds the raw numbers.

4.12 Description

A description could be a phrase or sentence that describes the meaning of
the quantity to a human, or it could be a UCD that either a human user or
software could use to understand the quantity.

4.13 Data Type

Data types are used to represent values and errors. All data types are con-
sidered classes; there will be no primitive types in the model. There is no
universally accepted place to draw the line between simple data types and
complicated data types, so at this point we propose several places a line might
be drawn. In principle the Quantity model will support arbitrary objects as
data types, but we may restrict initial implementations to use only simple
types.
The Quantity model supports arrays of values; by the Quantity ‘data

type’ we mean the data type of a single element in the array (a Quantity
containing an array of 2 doubles has data type ”double”, not ”array of 2
doubles”).
(Note: if non-simple types are allowed, one could have a Quantity con-

taining an single object of data type ’2-tuple of doubles’ - the semantics are
different even if the data values are the same, and the operation ’get first
value’ will return different things in the two cases.).
The minimum set of allowed data types includes logical/booleans, inte-

gers, real numbers, dates, and strings. These are all what could be called

8

scalars in the sense that there is a single represented value which does not
require further parsing or deconstruction.
The next data type that could be added to the list is the interval, which

is comprised of two fully ordered values of the same type. Thus, one can have
intervals of numbers, strings, and dates, but not intervals of boolean values
since they are not fully ordered (false is neither less than nor greater than
true). The interval type would be useful in tables or axes describing binned
data with different size bins, such as a list of observing time intervals. The
complex type from mathematics is of similar complexity. However, semanti-
cally it is a point in a particular two-dimensional space, so it introduces the
concepts of geometry.
Like the interval, there are many fixed-size data types that could be used,

starting with most simple geometry objects. Geometric types like point, line
(segment), circle, ellipse, and rectangle are fixed size and well understood
types. However, if we allow for geometry in general, one would immediately
like to add polygon as well, but polygon a variable sized collection of points.
Since string is also variable sized, and this appears to be the only slippery
part of polygon, it is probably acceptable; polygon is certainly a very useful
data type for representing regions, just as point is very useful in describing
positions such as (RA, Dec) pairs.
Given that strings and polygons have variable length, it is tempting to

consider other variable-length data types, such as lists, for use as the value
of a quantity. Since such constructs are used for aggregation with none or
minimal additional semantic value, we propose to aggregate quantities rather
than allow such data types to be used within a quantity. (Note: Strings and
polygons have considerable additional meaning beyond being a collection.)
Where to draw the line? There appear to be three places to draw the

line. Minimally, we only allow scalars (string, number, date, and boolean).
Alternatively, we allow for scalars, intervals, and tuples (points), but not
general geometric types. It appears clear that beyond geometry and arrays
there lies a whole mess of possible types... just look at the STL or the Java
Collections API for a hint of the size and complexity of that can of worms.
Our proposal is to adopt the intermediate case: for the time being Quan-

tities can be arrays of scalars, intervals or tuples, but not of polgyons, circles,
or other objects. However, software should be prepared to handle unknown
data types gracefully.

4.14 Associated Metadata

In our Quantity model, we promote extensibility by allowing other Quantities
to be referenced as ’associated metadata’. The semantics of this association
are not defined by the Quantity model, but may be defined by higher level
models. For example, a SkyCoordinateSystem model based on Quantity
might specify that if an Equinox quantity is present as associated metadata,
it would be interpreted as the equinox of the coordinate system.

9

5 BasicQuantity Model

Here we summarize the BasicQuantity model before plunging into the more
complicated StandardQuantity model.
The BasicQuantity model associates metadata with a single scalar value.

We present its interface below. It allows a single value to be grouped with
a name, description, data type, unit, UCD and accuracies (errors etc.). It
does not support associated metadata or alternate descriptions, handled by
the more sophisticated StandardQuantity model described below. It also
supports neither arrays of values nor, consequently, coordinate systems on
the axes of those arrays (the ‘coordinate system’ in basic quantity is the
system that the value itself is in). The BasicQuantity interface is a subset
of the StandardQuantity interface, so that we may inherit StandardQuantity
from BasicQuantity.

There is some disagreement about whether BasicQuantity should in fact

support errors and associated metadata. Other methods from CoreQuantity

below could be added to BasicQuantity.

In the full model described below, BasicQuantity implements Frame, and
here we list the methods of Frame as well as those specific to BasicQuantity.

<<interface>>

org.ivoa::BasicQuantity
getDataType(): DataType
setDataType(d: DataType): bool
getDescription(): string
setDescription(d: string): bool
getName(): string
setName(n: string): bool
getUCDString(): string
setUCDString(u: string): bool
getCoordinateSystem(): CoordinateSys-
tem
setCoordinateSystem(c: CoordinateSys-
tem)
getUnit(): Unit
setUnit(u: Unit): bool
getValue(): Object
setValue(v: Object): bool
addAccuracy(a: Accuracy) : bool
removeAccuracy(a: Accuracy) : void
getAccuracyList(): List

6 Proposed Interface Model

Here we briefly describe some general aspects of the model. In the following
subsections we present the interfaces, then describe the interfaces, and finally
present sample pseudocode to illustrate possible use of the interfaces.
The core idea of this model is that a Quantity object can be thought of

10

as a rule for getting values together with a frame (context) for those
values. The rule-for-values idea, allowing you to either list values explicitly
or provide an algorithm to derive them, unifies the use cases of simple data
values, theoretical model fit, and array axes (so that the axes of an array
Quantity are themselves Quantity objects).
The requirement to support both alternate coordinate axis descriptions

(say RA,Dec versus detector coords vs (l,b)) and alternate value frames (say
flux expressed in observed, dereddened, and rest frame versions) is rather
separate from the requirement to fully describe data and their frames. We
therefore layer the model by introducing CoreQuantity, which provides a
single description of either data or coordinate axes, and StandardQuantity,
which provides the mechanism to describe alternative representations and to
connect a description of coordinate axes with the description of the data.
A CoreQuantity has a single phenomenon (UCD) while a StandardQuantity
may be able to provide the data in terms of several related UCDs, and, if
the data is an array, may have coordinates on the array axes each with their
own UCDs.
A StandardQuantity consists of CoreQuantity objects describing single

values or arrays of values, and optionally CoreQuantity objects describing
the coordinate axes on those arrays. We distinguish these cases by refer-
ring to the CoreQuantity objects describing values as ValueQuantity, and
to the CoreQuantity objects describing coordinate axes as CoordsQuantity.
The concepts ValueQuantityand CoordsQuantityare not distinct data types
(classes) - they are both examples of the CoreQuantity class with different
usage contexts.
A CoreQuantity can contain either explicit data values, or a mapping

which generates data values given input data. A CoreQuantity has a function
”get the 1st, 2nd, 3rd... value”, which has an obvious interpretation if the
data values are explicit. If the CQ has a Mapping rather than explicit values,
it also may have a Parent CoreQuantity representing the input values and
frame; this allows mappings to be chained together.
As a use case, consider a 1-D spectrum which has three axis representa-

tions: the original detector channels, the calibrated wavelength, and the fre-
quency. We can provide three CoreQuantities describing the axis: Channel,
which has the trivial unit mapping and no Parent (the 2nd value of the Chan-
nel axis is 2, the channel number); Wavelength, with a polynomial mapping
and Channel as the Parent; and Frequency, with a F(lambda)=(c/lambda)
mapping and Wavelength as the Parent. To find the 2nd value of Frequency,
we chain back through the Parents till we get to Channel, and then map for-
ward to find that Frequency(2) is F(poly(2)), applying the wavelength and
frequency mappings to obtain the frequency value for channel 2. (One could
actually do without the semi-trivial Channel quantity, but it can be useful
to have it explicitly present. In practice, the mapping from wavelength to
frequency is so basic that it will probably be handled automatically by soft-
ware handling photon spectral coordinates rather than having to be explicit
in the Quantity, but the example illustrates the general idea.)
The use case of an RA, Dec image always drives complexity in astronom-

11

ical data models. Because the RA, Dec coordinate systems are coupled to
the X, Y axis pair and not separately to the X and Y axes, we are forced to
models which can represent this non-separability. Most (but not all) other
2-and-higher-dimensional use cases involve separable axes. In this model one
method handling this is to make the CoordsQuantityof such an image be a
single Quantity with vector (RA,Dec) data type, rather than two Quantities
(one for RA and one for Dec). Similarly, a position-velocity data cube could
have two axis quantities, one for position (with the 2-tuple double data type)
and one for velocity (assumed in this case to be separable.). However, it is
not forbidden to simply model the object using separate quantities for RA
and Dec - it just becomes harder to do the bookkeeping on their common
coordinate system.
The requirement to have a simple BasicQuantity interface for simple use

drives an inheritance relationship between Frame (whose methods are needed
for BasicQuantity), BasicQuantity, and CoreQuantity.

12

���
�

���
�

������������
������������

	�		�	
�

�

���
�

�
�����

FRAME

UCD, Unit, Datatype,
Name, Description,
CoordSys

BasicQuantity

getValue, setValue

CoreQuantity

MetaData, get/setValues
Accuracy
Mapping, Parent
locator

StandardQuantity

as alternate desc.

as axis description

Unit

DataType

CoordSys

Locator

Accuracy

Mapping

FwdTransform
InvTransform
composeMapping
...

descriptions)

ValueQuanities (alternate values representations)

AxesQuantities(alternate coord axes

Figure 1: Relation between Quantity interfaces (which might be an inher-
itance diagram for Quantity classes). On the right are shown subsidiary
interfaces which are incompletely worked out. The StandardQuantity ex-
tends CoreQuantity, and also aggregates CoreQuantities as both alternate
value descriptions and as coordinate axis descriptions.

13

6.1 Interfaces

<<interface>>

org.ivoa::CoreQuantity

extends BasicQuantity, and:

addMetaData(m: CoreQuantity): bool
removeMetaData(m: CoreQuantity):
bool
getMetaDataList(): List
getValue(locator: Locator): Object
setValue(locator: Locator, value: Ob-
ject): bool
getValues(r: Region): List
setValues(r: Region, l: List): bool
getNumberOfValues(): long
setNumberOfValues(n: long): bool
getMapping(): Mapping
setMapping(m: Mapping, parent: Core-
Quantity): bool
getParent(): CoreQuantity
CoreQuantity(list: List(CoreQ)): Core-
Quantity
createLocator(): Locator

<<interface>>

org.ivoa::StandardQuantity

extends CoreQuantity plus:

addCoordsQuantity(a: CoreQuantity): bool
removeCoordsQuantity(a: CoreQuantity):
bool
getCoordsQuantityList(): List
addValueQuantity(q: CoreQuantity)
removeValueQuantity(q: CoreQuantity)
getValueQuantityList(): List)
setCurrentCoordsQuantity(a: CoreQuantity
): bool
setCurrentValueQuantity(q: CoreQuantity)

<<interface>>

org.ivoa::BasicQuantity

extends Frame, and:

getValue(): Object
setValue(v: Object): bool
addAccuracy(a: Accuracy) : bool
removeAccuracy(a: Accuracy) : void
getAccuracyList(): List

14

<<interface>>

org.ivoa::Unit

get(): string
set(u: string): bool

<<interface>>

org.ivoa::DataType

get(): string
set(u: string): bool

<<interface>>

org.ivoa::Region

TBD

<<interface>>

org.ivoa::Accuracy

(TBD)

<<interface>>

org.ivoa::Frame

setCoordinateSystem(c: CoordinateSys-
tem): bool
getCoordinateSystem(): CoordinateSys-
tem
getUCDString(): string
setUCDString(u: string): bool
getUnit(): Unit
setUnit(u: Unit): bool
getDataType(): DataType
setDataType(d: DataType): bool
getDescription(): string
setDescription(d: string): bool
getName(): string
setName(n: string): bool
Frame(framelist: List): Frame
getFrameMembers(): List

<<interface>>

org.ivoa::Locator

setArrayIndices(p: List): bool
setCoords(p: List): bool
offset(o: long): bool
next(): bool
prev(): bool
getParent(): CoreQuantity
forward(n: long): bool
back(n: long): bool
reset(): void
all(): Region
getDimensions(): long List
setDimensions(l: long List): bool
setAxisIndices(l: List)
getAxisIndices(): List
setRegion(r: Region): bool

<<interface>>

org.ivoa::Mapping

fwdTransform(in: List): List
invTransform(in: List): List
getMappingType(): MappingType
getMappingParams(): List
composeMapping(m: Mapping): Map-
ping
decomposeMapping(): List
Mapping(maplist: List): Mapping
getMappingMembers(): List

<<interface>>

org.ivoa::CoordinateSystem

(TBD)

15

6.2 Interface descriptions

In these descriptions, ‘default’ indicates the behaviour to be assumed if a
serialization omits the relevant tokens.

6.2.1 Frame

The Frame carries the basic contextual information: name, description, units,
UCD, description, coordinate system.
The Frame(framelist: List) constructor creates a compound frame from

individual frames. The getFrameMembers() returns the individual frames.

• The value of the name has no default: blank or null names are not
allowed. We use the name as a primary reference for identifying the
Quantity.

Rules for scope of names have not yet been discussed: can we have two
Q with the same name in the same document (suggestion: yes), or even
within the same parent element (suggestion: no, so that XPATH plus
Q name gives a unique label).

• The value of the UCD string has the default of a blank or null string
(blank and null considered equivalent), interpreted as the absence of
any UCD specification. The semantics and syntax of the UCD shall be
as specified by the IVOA UCD group.

• The Units object includes the concept ‘unitless’, which is the default.
The serialization of units as strings shall be discussed in a separate
document.

• The default data type is string.

6.2.2 Mapping

The Mapping transforms values. It is described in more detail in the Mapping
Data Model document.
Similar to the Frame methods, the Mapping(maplist) constructor and

the getMappingMembers() routine handle compound maps. A compound
map is just a way of grouping maps into an object of higher dimensionality:
the (exterior) product of a spatial axes map and a velocity axis map, for
example. It should not be confused with composing maps in series, which is
handled by the composeMapping and decomposeMapping routines.

6.2.3 BasicQuantity

Basic quantity is like a Frame but also can return a single value with the
getValue() function as well as accuracy information for that value with the
getAccuracyList() method.

16

• In a BasicQuantity, the getValue() must return a value of the data
type given by the getDataType() method. See the separate discussion
in this document for details of special and null values. Serializations
must include a value; there is no default.

• The getAccuracyList() may return a null or empty list; this is the
default.

Note that the only data associated with a BasicQuantity that cannot be
defaulted in a serialization are the name and the value.

6.2.4 CoreQuantity

CoreQuantity is a Frame which can return a finite set of values and accura-
cies, and may have other generic associated metadata.
The getValue methods return a single object whose data type is that of

the CoreQuantity. The various polymorphic versions let you ask for the nth
value, the value at array index coords (i,j..) or if coordinate axes are defined,
the value at particular coordinates. This may imply an interpolation if the
coordinates are not on an integer array index.
The add/get/removeMetaDatamethods allow us to attach other Core-

Quantities (or BasicQuantities) as associated metadata. The default for get-
MetaData is for there to be an empty metadata list.
The getMapping method returns the Mapping (see below) associated

with the rule to get values. The getParent method returns a Quantity
which provides the input frame for the Mapping.
The Accuracy methods associate a list of Accuracies of different kinds

with the quantity. We haven’t worked out the details yet, but the idea
is that you might attach different kinds of accuracy (quality, uncertainties,
array index cell sizes) to the data, and you get the list of them all and look
for the kind of accuracy you want.
If the CoreQuantity was serialized as a set of explicit values, the resulting

Mapping is a special type we will call LookupMapping, and the getParent
method returns null.

6.2.5 StandardQuantity

The ValueQuantity methods manage alternate representations of the val-
ues. The CoordsQuantity methods manage alternate representations of
the coordinate axes, if any.

6.2.6 Locator

The Locator object is provided to give a way of specifying to the Core-
Quantity’s GetValue method which data element, elements, or interpolation
between elements, is wanted. The locator’s array index and coords methods
return pixel (array index) locations in the object, possibly not at integer
array index locations. We also provide iterator methods, although it’s not
clear if these are needed within the model.

17

6.3 Examples

As a moderately difficult use case, suppose we consider a position-velocity
(RA, Dec, V) data cube of size 512 x 512 x 30, and we wish to evaluate the
following cases: (1) Value of array index 128,20,3; (2) Interpolated value at
coordinates (121.32 deg,-22.12 deg,120 km/s).
The pseudocode below shows how to do this; please note we have avoided

defining convenience functions in our interface, and these operations would
be much simpler in a production interface.

/* First we create an Axes collection describing the axes

of the array in RA, Dec, velocity space. */

/* The initial step is to define the frames */

Pos = new CoreQuantity();

Pos.setCoordinateSystem("J2000/FK5");

Pos.setUCDString("POS_EQ");

Pos.setUnit("deg");

/* Now define the spatial mapping. We haven’t elaborated the specific

subclasses of Mapping interface yet so take these as illustrative */

Mapping M1 = new SphericalTanProj2(121.30, 21.02, ...), NULL);

Pos.setMapping(M1);

Pos.getLocator().setDimensions({ 512, 512 });

/* Pos has datatype "vector of 2 doubles" */

Pos.setDataType(VO_Vector(VO_DOUBLE, 2));

Vel = new CoreQuantity();

Vel.setCoordinateSystem("Heliocentric");

Vel.setUCDString("RAD_VELOCITY");

Vel.setUnit("km s^-1");

/* For the velocity axis, suppose we have a set of fixed values for each channel

rather than a continuous mapping:

*/

Vel.setNoValues(30);

Vel.setValues(List { 10.0, 20.0, 25.0, 28.0, 32.0 ... });

/* automatically implies Vel.setMapping("Explicit") */

Vel.setDataType(VO_DOUBLE);

/* Now collect these axes into an Axes collection */

CoreQuantity AxisCollection1 = new CoreQuantity({ Pos, Vel });

/* Next make the value (flux) quantity: */

18

CoreQuantity Flux = new CoreQuantity();

Flux.setCoordinateSystem("Baars_et_al_1977_scale");

Flux.setUnit(Unit("Jy Hz"));

Flux.setUCDString("phot.flux");

Flux.setDataType(VO_DOUBLE);

/* Set the values for the array using some method or other */

Flux.setValues(List readFITS(foo));

/* Now make the overall quantity */

StandardQuantity Q = new StandardQuantity();

Q.addValueQuantity(Flux);

Q.addCoordsQuantity(AxisCollection1);

/* Just to emphasize there can be more than one AxisCollection,

let’s do a second one: */

AxisCollection2 = CoreQuantity({ Galactic, Wavelength });

Q.addCoordsQuantity(AxisCollection2);

...

/* Note that A is the base Axes, so L knows to expect 3 values */

L = Q.getLocator();

double V1 = Q.getValue(L.setArrayIndices(128, 20, 3));

double V2 = Q.getValue(L.setCoords(121.32, -22.12, 120.0));

Recall that we can define alternate CoreQs which are transformations of other
CoreQs, allowing chained mappings. Hence:

Frame frame1 =new Frame(ObservedFrame, UCD_PHOT_FLUX, "Jy Hz");

Frame frame2 =new Frame(RestFrame, UCD_PHOT_LUM, "erg s^-1");

Mapping map1 =new Mapping("Dereddening");

Mapping map2 =new Mapping("RestFrame");

CoreQuantity DeredFlux = new CoreQuantity(frame1);

DeredFlux.SetMapping(map1, Flux);

CoreQuantity RestLum = new CoreQuantity(frame2);

RestLum.SetMapping(map2, DeredFlux);

Q.addValueQuantity(DeredFlux);

Q.addValueQuantity(RestLum);

How might the first part of this look in a production interface with convenience
functions? Perhaps a little more compact, for example:

Mapping M1 = new SphericalTanProj2(121.30, 21.02, ...), NULL);

Frame F1 = new SkyFrame("J2000/FK5", POS_EQ, "deg");

CoreQuantity Pos = new CoreQuantity(F1, M1, { 512, 512 }, PositionType);

CoreQuantity Vel = new CoreQuantity(F2, NULL, {30}, VO_DOUBLE);

Vel.setFrame() = new VelFrame("Heliocentric", RAD_VELOCITY, "km s^-1");

Vel.setValues(List { 10.0, 20.0, 25.0, 28.0, 32.0 ... });

CoreQuantity AxisCollection1 = new CoreQuantity({ Pos, Vel });

Frame Flux = new PhotFrame("Baars_et_al_1977_scale", phot.flux, "Jy Hz");

StandardQuantity Q = new StandardQuantity(Flux, VO_DOUBLE, AxisCollection1);

Q.setValues(List readFITS(foo));

19

7 XML Serialization

Since an interface does not specify the storage format of the data content, we
will specify rules for how one serializes an instance (object) that implements
an interface. As an initial cut without such rules, the interfaces described
above are used by hand to derive an XML Schema that allows for the serial-
ization of instances (data) and its storage or transamission in a fashion that
is independent of the class library (implementation) used by any application.
The proposed XML serialization of the model may be summarized as

follows:

7.1 Basic Quantity

1. The BasicQuantity interface is serialized with a <basicQuantity> tag.

2. The <basicQuantity> tag has attributes of name, and description

and ucd. Each of these attributes may instead be represented as an
element tag.

3. The value of BasicQuantity is held within a <value> tag.

4. Within each BasicQuantity, the data type is specified by a different tag
for each supported data type: <integer>,<string>,<float>. The
tags has an attribute of width (for suggested display field width). The
float tag has the additional attribute precision for number of decimal
places). The integer tag has the additional attributes signed=yes|no
and type=octal|decimal|hexadecimal (the defaults are signed=yes
and type=decimal). These types do not specify a binary representation.
We expect to later define derived types which give a recommended
binary representation compatible with the FITS data types.

5. Within each BasicQuantity or Frame, the Name, Description, UCD,
Unit and CoordSys values may appear as <name>, <description>,
<ucd>, <units> and <coordSystem> tags. The special tag <unitless/>
is equivalent to <units></units>. The name, description and ucd tags
may appear as attributes of the basicQuantity tag instead.

6. An <accuracy> tag is provided to encapsule accuracy information. De-
tailed modelling of accuracy has been deferred.

7. We provide a special serialization <trivialQuantity> to cover the
special case of a BasicQuantity of string data type, which has no units,
etc.

8. There is also a <frame> tag to serialize a Frame, which is essentially a
quantity without values.

9. We provide a special serialization <refQuantity> which acts as a pointer
to quantities elsewhere in the same document. This is useful with the
<metaData> tag (see below).

20

10. The order of tags within a BasicQuantity is: name, description, ucd,
coordSystem, units, value

7.2 CoreQuantity

1. The CoreQuantity interface is serialized with a <coreQuantity> tag
with attributes of name and description, ucd, and also size, the latter
being integer-valued and corresponding to the getNumberofValues()
method.

2. The element tags defined for use within BasicQuantity also apply to
CoreQuantity.

3. A special data type <vector> allows the construction of vectors of the
basic types, with the elements described by extra Frames within the
<vector> tag. This corresponds to the getFrameMembers() method.

4. A <metaData> tag encloses Quantity tags describing associated meta-
data, corresponding to the getMetaDataList() method.

5. For an algorithmic mapping to get values, we use a <mapping> tag.
Within this tag, the specific mapping has tags to define its parameters;
these will be discussed in a separate document on mapping serialization.

6. For the case where the mapping from sample number to value is given
by explicit values, a <values> tag is used instead of <mapping>.

7. For cases where there is more than one value, the individual values
within <values> may be enclosed within <value>...</value> tags.
Alternatively the values may simply be space-separated, except in the
case of strings which might contain spaces. Examples:

<values>2 -30 -85 74 16 57 65 -3 87 81</values>

<values>String1 String2 </values>

<values><value>First string</value><value>Second string</value></values>

8. In the case of only one value, the <values> and <value> tags are
equivalent.

9. For the special case where the data type is an arbitrary object, we do
not provide a specific data type <object> tag. Instead, we replace the
<values> tag with a <members> tag, which should be read as ‘<values>
and by the way the datatype is <object>’.

10. The order of tags within a CoreQuantity is: metadata, name, descrip-
tion, ucd, coordSystem, units, (data type) or vector or members, values
or mapping, accuracy.

21

7.3 StandardQuantity

1. The StandardQuantity interface is serialized with a <standardQuantity>
tag with attributes name, description and size.

2. The StandardQuantity uses <axesList> and <altValues> to delimit
the alternate axes and value representations of CoordsQuantityList
and ValueQuantityList respectively; i.e. the method getCoordsQuan-
tityList() maps to <axesList> and getValueQuantityList() maps to
<altValues>.

3. Within an <axesList>, each single representation of the axes is given
within an <axes> tag. Within that tag, a sequence of <coreQuantity>
tags describe the axes. The <axes> tag corresponds to the addCo-
ordsQuantity() method, and represents a compound coreQuantity (a
coreQuantity with ‘members’, see below) aggregating the individual
axes.

4. If there is only one representation of the axes, the <axesList> tag
may be omitted and the single <axes> tag appears directly within
<standardQuantity>.

5. The <altValues> tag, contains a sequence of <coreQuantity> tags
describing the different representations of the StandardQuantity values.

6. If there is only one representation of the values, the <altValues> tag
is omitted.

7. A StandardQuantity contains a default value (or mapping) represen-
tation with the properties of CoreQuantity. This default does not ap-
pear within the <altValues> tag - instead its elements (ucd, values,
mapping, metadata etc) appear at the StandardQuantity level with no
<coreQuantity> tag - making use of the idea that a StandardQuantity
”is a” CoreQuantity. These elements apply only to the default Val-
ueQuantity and not to the alternate representations, which have their
own elements.

8. For multidimensional arrays, the dimensions of the axes are inferred
from the size attribute of the individual axis core quantities. The
ordering convention is consistent with FITS so that

<quantity>

<axes>

<coreQuantity name="x" size="3"/>

<coreQuantity name="y" size="2"/>

</axes>

<values> A B C D E F</values>

</quantity>

implies a 3 x 2 array ordered so that

22

v(x=1,y=1) = A

v(x=2,y=1) = B

v(x=3,y=1) = C

v(x=1,y=2) = D

v(x=2,y=2) = E

v(x=3,y=2) = F

9. The order of tags within a StandardQuantity is: metadata, name, de-
scription, ucd, coordSystem, units, axesList or axes, (data type, includ-
ing vector or members, values or mapping, altValues, accuracy.

7.4 Notes on XML aspects of the serialization

There are 3 types of quantity, ”basic”, ”core” and ”standard”, and in that or-
der are extensions of the prior type node structure. Extension is via accretion
of XML components (whether child nodes or attributes).
Thus, as components are optional/have sensible defaults, you should be

able to ”upcast” a more primitive type of quantity into a higher one. For
example, the serialization of a coreQuantity describes both a coreQuantity,
and a standard quantity (with some implicit defaults).
Conversely, IF a ”advanced” level quantity is fairly simple (such as a core

quantity that held only one scalar number) then its representation in XML
will look exactly like its superclass realization, the basic quantity.
XML serializations of quantities may have the following valid XML node

names (excepting extensions the user may make to the schema) with the
corresponding XML schema types:

XML Node Name XML Schema Complex Types allowed
basicQuantity basicQuantityType
coreQuantity coreQuantityType
stdQuantity stdQuantityType
quantity stdQuantityType

A user should be able to create XML schemata from these types. The
new nodes may have limits placed on the quantities such that units, ucd,
etc are limited to a preferred settings. For example, the ”velocity” element
constucted from a ”stdQuantityType” may be limited to having units of
type ”cm/sec^-1” and a UCD for ”velocity”. The new schema would give
this ”extended” quantity the node name ”velocity” in order to identify it
in the XML document. In all other aspects, it behaves as an unrestricted
quantity. Examples on how to do this in XML schemata will be given in
another document.
Within a type of quantity, there are a number of simplifying defaults

which, for the largest fraction of data, will serve to compress the XML which
need be passed; some possible simplifications are noted below. Thus, when
some attributes are not specified, they are assumed to fall to some default.
For example, if dataType isn’t specified, it is assumed to be ”a scalar string”;
if ”units” are not specified, they are assumed to be ”unitless”. To show a
possible choice, he following examples *could* be considered equivalent:

23

<coreQuantity name="example">

<unitless/>

<string>

<values>My data</values>

</coreQuantity>

and

<coreQuantity name="example">

<values>My data</values>

</coreQuantity>

and

<coreQuantity name="example">

<value>My data</value>

</coreQuantity>

7.5 Strings and string arrays in XML

Note that in XML, white space in normal string values (called PCDATA
in XML) is not preserved. If number of spaces or presence of leading and
trailing spaces is important, we would need to do

<coreQuantity name="example">

<values><![CDATA[My data]]></values>

</coreQuantity>

If we want an array of strings, we would do

<coreQuantity name="example" size=2>

<values>

<value><![CDATA[My data]]></value>

<value><![CDATA[Your data]]></value>

</values>

</coreQuantity>

Note that white space is preserved in attribute values. Hence, in

<basicQuantity name="Silly Name ">Fred</basicQuantity>

the white space in the name is preserved, while in

<basicQuantity>

<name>Silly Name </name>

<value>Fred</value>

</basicQuantity>

it is not.

24

7.6 XML instance examples

1. Single Scalar Value.

Here we present a single string valued quantity:

<quantity name="Observer" description="Obs. name">Johannes H. Kepler</quantity>

An equivalent and more verbose version:

<!-- a completely explicit specification (stdQuantity) -->

<quantity size="1">

<name>Observer</name>

<desc>name of Observer</desc>

<ucd/>

<coordSystem/>

<axesList/>

<unitless/>

<string length="14"/>

<values>Johannes H. Kepler</values>

<altValues/>

</quantity>

A full XML document might have

<?xml version="1.0"?>

<!-- test one : basic quantity with ucd, dataType and value -->

<ivoa:basicQuantity

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ivoa="http://ivoa.org"

xsi:schemaLocation="http://ivoa.org BasicQuantity.xsd"

name="Observer"

description="name of Observer"

>

<ivoa:ucd>human.observer</ivoa:ucd>

<ivoa:string width="14"/>

<ivoa:value>Johannes H. Kepler</ivoa:value>

</ivoa:basicQuantity>

2. Here is a serialization of a Quantity containing three photometry points,
with an enumerated wavelength axis and several alternate represena-
tions of the values. Note that this illustration of the use of Quantity
isn’t a recommended way to represent this kind of data; the Observa-
tion model will provide a full spec for that.

<?xml version="1.0"?>

<standardQuantity

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

25

xmlns="http://ivoa.org"

xsi:schemaLocation="http://ivoa.org StandardQuantity.xsd"

name="Photometry" size="3"

>

<metaData>

<trivialQuantity name="Observer">Alex Szalay</trivialQuantity>

<basicQuantity name="Exposure"><units>s</units><float/>

<value>1480.2</value></basicQuantity>

<coreQuantity name="ChipIDs" size="3"><integer/>

<values>2 7 9</values></coreQuantity>

</metaData>

<ucd>phot.opt</ucd>

<axes>

<coreQuantity name="wavelength" size="3"><float/>

<values>4400.0 5500.0 9700.0</values><units>Angstrom</units>

</coreQuantity>

</axes>

<units>mJy</units>

<float/>

<values>4.3 8.2 1.3</values>

<altValues>

<coreQuantity name="Magnitudes" size="3">

<ucd>phot.mag</ucd>

<values>12.1 14.3 9.8</values>

</coreQuantity>

<coreQuantity name="F-lambda" size="3">

<ucd>phot.flambda</ucd>

<units>erg cm^-2 s^-1 Angstrom^-1</units>

<values>1.31E-12 1.28E-13 1.88E-13</values>

</coreQuantity>

</altValues>

</standardQuantity>

3. Here is an example of a StandardQuantity with an array and coordinate
mappings on the axes.

The <axesList> tag encloses two <axes> tags, each with its own rep-
resentation of the axes. The first <axes> tag has ‘x,y,time’ axes; the
second has ‘pos,utctime’ axes. The ‘pos’ axis has vector data type, and
the <vector> tag is used to specify the two individual frames RA,Dec
making up the vector. The vector has a single mapping taking (x,y)
to (RA,Dec); since the mapping is intrinsically two-dimensional we at-
tach it to the vector concept ‘pos’ rather than the separate RA and
Dec concepts. After the <axesList> tag the values of the actual image
are given in <values>. In actual use we will probably replace this with
a reference to part of a FITS file; the syntax for this has not yet been
discussed.

<quantity name="Multiple time exposure image" size="18">

26

<ucd>phot.flux</ucd>

<units>erg cm^-2 sec^-1</units>

<axesList>

<axes>

<quantity name="x" size="1024">

<integer width="2"/>

<mapping><unit-mapping/></mapping>

</quantity>

</quantity name="y" size="1024">

<integer width="2"/>

<mapping><unit-mapping/></mapping>

</quantity>

<quantity name="time" size="3">

<coordSystem>

<timescale>TDB</timescale>

<timezerojd>2454123.1</timezerojd>

</coordSystem>

<units>s</units>

<mapping>

<linear-map ref=1.0 value=1483212.3 step=600.0/>

</mapping>

</quantity>

</axes>

<axes>

<quantity name="pos">

<ucd>POS.EQ</ucd>

<coordSystem>J2000/ICRS</coordSystem>

<units>deg</units>

<vector>

<frame name="RA" size=1024/>

<frame name="Dec" size=1024/>

</vector>

<mapping>

<wcsmap type="TAN">

<refvals>131.2181 -31.1284</refvals>

<refpos>512.1 512.1</refpos>

<scales>-0.0016 0.0016</scales>

<rotation>48.3121</rotation>

</wcsmap>

</mapping>

</quantity>

<quantity name="utctime" size="3">

<coordSystem>UTC</coordSystem>

<units>d</units>

<mapping>

<polynomial nparams="3">

<param>131281.4</param>

27

<param>-.00013</param>

<param>4.823</param>

</polynomial>

</mapping>

</quantity>

</axes>

</axesList>

<float width="5" precision="2"/>

<values>10.12 12.34 20.34 13.87 24.76 5.67 6.80 .7 12.8

......

0.12 12.34 20.34 13.87 24.76 5.67 6.80 .7 12.8

</values>

</quantity>

28

