DM workshop

How to use Data Models to Enhance Interoperability in the VO

Interoperability Landscape

Data Interoperability

- The dataset contains all information required by clients to complete the processing
 - Display
 - Plot
 - Filtering
 - X match
 - Data sharing
 - o ...

• Client do not need to run provider-dependant code

VOTable at a Glance

- Catalog data are well supported by **VOTables**
 - VOtable has been designed for this purpose! 0

Data column well defined

- UCD, format unit, utype 0
- Global parameters (PARAM) 0

Possible column associations

GROUPs 0

Coordinate Systems

- Time/space 0
- Human readable information
 - INFO 0
 - DESCRIPTION 0
- Plenty of others features to discover within the 32 pages of the standard
- Anything we need to get a good interoperability level!
- Do we need more?

#	Interoperability Feature	VOTable
1	Quantities well defined	Good
2	Role of the quantities well defined	Poor due to UType flaw
3	The way quantities are nested	Poor group are little used
4	The way quantities relate each to other	Very poor no role - no multiple ref

Using a Specific Mapping Block

- Adding something to VOTable
 - Improve interoperability
 - Not breaking existing stuff

Model

- Quantities definition
- Description of the roles played by all quantities
- Description of the way quantities are nested
- Description of the way quantities relate each to other

• Consensus points

- WE need a better description of science (meta) data
- We have to work with existing models when available (Measure and Coordinates PhotDM)
- Working first with VOTables which are the most complete data containers in term of meta-data
- We have to design a mapping structure that can be added within VOTables without altering the original content

Contention points

• What is the most appropriate mapping syntax?

Modeling Levels

Model Fragments

Description of elements that constitute the measures

- Coordinate classes
- Measure classes

Model Components

Complete description of the measures

- Measure model
- MANGO parameter

Integrated Models

Description of science products

• One product = one model instance

Agree, Disagree

• Consensus points

- WE need a better description of science (meta) data
- We have to work with models for physical properties
 - Using the existing ones when available (Measure and Coordinates PhotDM)
- Working first with VOTables which are the most complete data containers in term of meta-data
- We have to design a mapping structure that can be added within VOTables without altering the original content

Contention points

- What is the most appropriate mapping syntax?
- Do the available models fit our needs?
- Which modeling level(s) must be used

DM Workshop Process

This Meeting

Meeting Objective

• Teach scientists/implementers/providers about the ongoing work on the different proposals

• Contributors will present feedback on their work on use-cases

- Work completed so far on a selection of 5 use-cases
- Vision of where a more mature version of the use case could end up someday.

• What we expect for/from the audience

- We hope to be able to provide a clear view on the issues.
- To give necessary inputs for people who might consider volunteering to relate their experiences at the Interop Workshop

Use case #1 Standard properties

• Simple tables with independent properties

- Use-case:
 - Providing end-users with a complete view on the data
- Data source
 - Vizier, Chandra and XMM-Newton
- Challenge
 - Getting the appropriate coordinate systems
 - Providing a good description of unusual data (High Energy)
- <u>https://github.com/ivoa/dm-usecases/tree/main/usecases/standard_properties</u>

QUANTITY	COORDINATE SYSTEM
Position	Space frame
Flux	Energy band
Hardness ratio	Energy bands (high and low)
Exposure time	Time unit
Observation time	Time frame
Quality flag	Set of accepted values
Proper Motion	Space Frame

Use case #2 Time Series

• Time Series

- Use-case:
 - Plotting time series
- Data source
 - Gaia (gavo): simple time series
 - Gaia (DPAC): Photometric points in different bands mixed in one table
 - ZTF: Photometric points of different objects mixed in one table
- Challenge
 - Discovering both independent and dependent axes
 - Processing table containing mixed data
- <u>https://github.com/ivoa/dm-usecases/tree/main/usecases/time-series</u>

QUANTITY	COORDINATE SYSTEM	
Time stamp	Independent axis - Time frame	
Magnitude/Flux	Dependent axes - Filter description	

Use case #3 Precise Astrometry

• Simple tables with independent properties

- Use-case:
 - Getting the most accurate positions at a given epoch
 - Cross-match
- Data source
 - Synthetic data table (derived from Gaia)
- Challenge
 - Restoring matrix errors binding multiple parameters
- <u>https://github.com/ivoa/dm-usecases/tree/main/usecases/precise_astrometry</u>

QUANTITY	ERROR	ERROR CORRELATIONS
Position	2D error + covariance	ProperMotion/Parallax/RadialVelocity
Proper motion	2D error + covariance	Position/Parallax
Radial velocity	1D error	Position
Parallax	1D error	Position/ProperMotion

• Column Grouping

- Use-case:
 - Showing to end-users additional data attached to one given quantity
- Data source
 - III/21/gcrv Vizier catalog
- Challenge
 - Make the column associations machine readable
- <u>https://github.com/ivoa/dm-usecases/tree/main/usecases/column_grouping</u>

QUANTITY	ROLE
VR	Radial velocity
q_VR	Quality flag of the radial velocity
o_VR	Number of plates used to compute the radial velocity
r_VR	Abbreviation of the observation

Combined Data

- Use-case:
 - Providing users with one VOTable containing sources with associated data
 - Source + detection + counterparts + spectra +
 - Complex data transport
 - Registry records
 - Simbad objects
 - Bundle of source data
- Data sources
 - XMM: sources + spectra
 - Chandra: Sources + detections
- Challenge
 - Restoring association between data spread over multiple tables
- <u>https://github.com/ivoa/dm-usecases/tree/main/usecases/combined_data</u>

- Workshop Introduction (Laurent MICHEL) 15'
- VODML Overview (Gerard Lemson) 10'
- Proposals
 - Mark Cresitello Dittmar 20'
 - Markus Demleitner 20'
 - Laurent Michel 20'
 - François Bonnarel 10'
- Q/A 15'
- Wrap-up 10'

wrap-up

DM session

• 26/05 15h UTC

• DM WS session #1: Mapping strategy

• 27/05 15h UTC

DM WS session #2: Model review

• 28/05 15h UTC

• DM WS session #3: VOTable mapping syntax

Volunteer to contribute?

laurent.michel@astro.unistra.fr

backup

Interoperability Landscape

Data Interoperability

- The dataset contains all information required by clients to complete the processing
 - Display
 - Plot
 - X match
 - Data sharing
- Client do not need to run provider-dependant code

Modeling data == Building data descriptions

- that can be shared by different stakeholders and
- that are independent from any particular data provider
- That are independent of any particular serialization or container

This is why we are here

Models must provide:

- A clear definition of all modeled quantities
- A clear description of the roles played by all modeled quantities
- A clear description of the way quantities are nested
- A clear description of the way quantities relate each to other

DM Workshop: Timeline

• February 2021-> April 2021

- Git repository open: <u>https://github.com/ivoa/dm-usecases</u>
- Announcement to the community
- Contributions / Discussions

• May 2021: Pre-interop meeting

- The proposals documented on the repo are presented to community
- Expect to involve people who are not part of the current discussions yet but who volunteer to match the proposals with their expectations and to report at interop.

May 2021: Interop workshop

- 3 focus sessions
 - Summary of the process
 - Scientific vision on this problem
 - Proposal outlooks
 - Discussion

• June 2021: Post-interop wrap-up

- Not setup yet
- Should end with clear conclusions and a roadmap

