

Science Considerations for Data Models Some lessons from the Chandra Source Catalog

Dr. Ian N. Evans

Chandra X-ray Center Data System End-to-End Scientist Chandra Source Catalog Project Scientist

Center for Astrophysics | Harvard & Smithsonian

IVOA Interop 2021 May 27

Scientifically complex datasets I

- The era of computationally intensive data analyses
 - Over the next decade data providers are going to have to build and serve scientifically complex datasets that incorporate increasingly sophisticated and robust scientific analyses
- Datasets that require algorithms that are too complex or too computationally expensive (or both) for individual researchers to easily perform bulk data analyses
- Such datasets MUST be scientifically rigorous and provide to the end user ALL the details needed to fully understand the data

Scientifically complex datasets II

- X-ray astronomy is there now
 - Ex.: Chandra Source Catalog rel. 2.0 required ~600 CPU years to process
 - ~317K X-ray sources, ~928K detections (~1.42M w/photometric upper limits), 3 main + 6 ancillary tables totaling 1687 data columns, 38 types of FITS data products (~36TB total)
 - Precision astrometry, matching detections, source extent, multi-band photometry, spectral fits, temporal variability, ...

A quick X-ray astronomy primer

• X-ray astronomy instruments typically detect individual X-ray photons

 (X_{raw}, Y_{raw})

- 4-dimensional very sparse data cube (x_{raw} , y_{raw} , t_{obs} , PHA) of photon events

Raw detected position

 \rightarrow Photon time of arrival t_{TT}

 \rightarrow Photon energy E

 \rightarrow Photon sky position

CSC 2.0 ACIS detections

Sources with as few as $\sim 4-5$ net counts can be detected reliably with low-background instruments such as those present on *Chandra*

HARVARD & SMITHSONIAN

(α, δ)

X-ray photometry I

Assume model

spectral shape

Guess model

parameters

• The mapping from event PHA to photon energy is complex because it *depends on the source spectrum* which you are trying to determine

X-ray photometry II

- CSC uses Bayesian X-ray aperture photometry approach (Primini & Kashyap 2014 ApJ 796, 24)
 - Multiple detections/overlapping apertures are solved for simultaneously
 - Joint posterior probability density functions (PDFs) for source and background fluxes in an *n*-source bundle are computed

Confidence intervals I

- Measurements such as X-ray photometry fluxes are only as robust as the confidence intervals on the measurements
- Confidence intervals are typically estimated from
 - Raw data uncertainties (e.g., photon statistics)
 - Calibration data uncertainties
 - Calibration systematic uncertainties
 - Model/fitting uncertainties
- Combining uncertainties means that confidence intervals are rarely Gaussian, seldom symmetric, and often not analytic

Confidence intervals II

- PDFs and MCMC draws often provide better representations of the true confidence distributions
- The CSC quotes independent lower and upper confidence limits but in some cases also provides PDFs and/or MCMC draws
 - The end user can calculate whatever confidence percentile they choose
 - MCMC draws can provide both measurement information and confidence intervals

RA/Dec draws for two separate detections in CSC 2.0

Temporal variability

- Many X-ray sources are temporally variable (both within a single observation and from observation to observation)
 - Users want both individual epoch data (for temporal studies) and multiepoch data
 - Combining data from multiple epochs often improves S/N
 - CSC does this via a Bayesian Blocks analysis to identify epochs to be combined for which the source is in a similar state
 - Non-detections can provide photometric upper limits
 - Users also want "canonical" properties for the source
 - Best estimate ("most useful") values and global averages

Some additional considerations

- Significant ancillary data are required to characterize a measured source property
 - For the CSC, response matrices, auxiliary responses, spectral models, observation epochs, combined observations, ... all go into defining a measurement
 - Some measurements have built in assumptions (such as the source spectral model) and there may be multiple alternatives
- There may be a many-to-many relationship between *detections* and *sources* that must be captured
 - For *Chandra* the PSF size varies by ~100× across the field of view

Data model notes I

- Data models must provide information about the *shape* of the confidence distribution (*especially* if it is not analytic)
 - Comparing confidence limits (e.g., 95% confidence) between different datasets is impossible if the distribution is not known
- Data models must support use of PDFs and MCMC draws representations of measurement confidence intervals
 - The use of Bayesian models to compute measurement PDFs via MCMC draws is rapidly becoming the norm in X-ray astronomy data analyses and will be assumed in the future

Data model notes II

- Data models must associate epoch information with measurements
 - Properties derived from single epochs and groups of epochs may be relevant and highlight different facets of the sources
 - *Ex.:* For a flaring source a global average and an average of epochs during the flares will provide vary different information
- Data models must associate ancillary data including assumptions with measurements
 - Measurements depend on those data and assumption
- Data models must support lower/upper limits on measurements

Conclusions: Data models and X-ray data

- Can IVOA data models represent X-ray and X-ray source data robustly?
 - Mark C.-D.'s use case examples suggest few (or no?) changes may be required for many basic models (measurement, coordinates, cube, ...)
 - Some models may require more extensive revisions before they can robustly represent X-ray astronomy data
 - For X-ray source models, MANGO appears to provide a good framework on which to build the necessary robust representations in the future

THANK YOU!

