
Data Access Layer Interface

 International

 Virtual

 Observatory

Alliance

IVOA Data Access Layer Interface

Version 1.0
IVOA Internal Working Draft 2012-10-14

Interest/Working Group:

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDAL

This version:

WD-DALI-1.0-20121014

Latest version:

Not yet issued

Previous version(s):

WD-DALI-1.0-20120724

WD-DALI-1.0-10120202

Editors:

Patrick Dowler

Authors:

Patrick Dowler, Markus Demleitner, Mark Taylor, Doug Tody

- 1 -

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDAL

Data Access Layer Interface

Abstract

This document describes the Data Access Layer Interface (DALI). DALI defines
the base web service interface common to all Data Access Layer (DAL) services.
This standard defines the behaviour of common resources, the meaning and use
of common parameters, success and error responses, and DAL service
registration. The goal of this specification is to define the common elements that
are shared across DAL services in order to foster consistency across concrete
DAL service specifications and to enable standard re-usable client and service
implementations and libraries to be written and widely adopted.

- 2 -

Data Access Layer Interface

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
TODO

Contents
 1 Introduction...5

 1.1 General Principles...5

 1.2 The Role in the IVOA Architecture..5

 1.3 Example Usage of DALI Specification..6

 2 Resources...7

 2.1 Asynchronous Execution: DALI-async..7

 2.2 Synchronous Execution: DALI-sync..9

 2.3 Examples: DALI-examples..9

 2.4 Availability: VOSI-availability...10

 2.5 Capabilities: VOSI-capabilities..10

 2.6 Content: VOSI-tables..11

 3 Parameters..13

 3.1 General Rules...13

 3.1.1 Case Sensitivity..13

 3.1.2 Literal Values: Numbers, Boolean, Date, and Time...........................13

 3.1.3 Multiple Values...14

 3.2 Standard Parameters..14

 3.2.1 REQUEST..14

 3.2.2 VERSION..14

 3.2.3 RESPONSEFORMAT..15

 3.2.4 MAXREC..16

- 3 -

http://www.ivoa.net/Documents/

Data Access Layer Interface

 3.2.5 UPLOAD...17

 3.2.6 RUNID..18

 4 Responses..19

 4.1 Successful Requests...19

 4.2 Errors...19

 4.3 Redirection..20

 4.4 Use of VOTable...21

 4.4.1 Overflow..21

 4.4.2 Errors..22

 4.4.3 Additional Information...23

 5 References..24

- 4 -

Data Access Layer Interface

 1 Introduction
The Data Access Layer Interface (DALI) defines resources, parameters, and
responses common to all DAL services so that concrete DAL service
specifications need not repeat these common elements.

 1.1 General Principles

 1.2 The Role in the IVOA Architecture

DALI defines how DAL service specifications use other IVOA standards as well
as standard internet designs and protocols.

DAL services use the Universal Worker Service (UWS) pattern for asynchronous
requests. All DAL services include Virtual Observatory Support Interfaces (VOSI)
resources. DAL services generally use VOTable as the default output format for
successful queries and always use VOTable to return error documents.
Astronomical coordinate values accepted and returned by DAL services use a
string representation of the Space-Time Coordinates (STC) data model. Other

- 5 -

Data Access Layer Interface

data models maybe describe the content of a specific DAL service; in such
cases, the Utypes in the response used that describe the content will be those
specified by the data model.

 1.3 Example Usage of DALI Specification

- 6 -

Data Access Layer Interface

 2 Resources

DAL services are implemented as HTTP REST [18] web services. The primary
resource in a DAL service is a job. A DAL job is defined by parameters (see 3)
and can be executed either synchronously or asynchronously. A concrete service
specification defines the job parameters and the manner of execution is defined
by separate resources below.

In addition to job list resources, DAL services also implement several Virtual
Observatory Support Interface (VOSI) resources to describe service availability,
capabilities, and content.

A concrete DAL service must define at least one DALI-async or DALI-sync
resource. It may define both with the same job semantics (e.g. TAP-1.0) or it may
define one with one kind of job and the other with a separate kind of job (a
service that does some things synchronously and others asynchronously).

resource type resource name required

DALI-async service specific service specific

DALI-sync service-specific service specific

DALI-examples /examples no

VOSI-availability /availability yes

VOSI-capabilities /capabilities yes

VOSI-tables /tables service specific

A simple query-only DAL service like ConeSearch can be easily described as
having a single DALI-sync resource where the job is a query and the response is
the result of the query.

 2.1 Asynchronous Execution: DALI-async

Asynchronous resources are resources that represent a list of asynchronous jobs
as defined by the Universal Worker Service (UWS) pattern [10]. Requests can
create, modify, and delete jobs in the job list. Special requests to modify the
phase of the job cause the job to execute or abort.

As specified in UWS, a job is created by using the HTTP POST method to modify
the job list. The response will always be an HTTP redirect (status code 303) and
the Location (HTTP header) will contain the URL to the job (a child resource of
the job list).

POST http://example.com/base/async-jobs

- 7 -

Data Access Layer Interface

< HTTP/1.1 303 See Other

< Location: http://example.com/base/async-jobs/123

The job description (an XML document defined by the UWS schema) can always
be retrieved by accessing the job URL with the HTTP GET method:

GET http://example.com/base/async-jobs/123

<?xml version="1.0" encoding="UTF-8"?>

<uws:job

xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink">

 <uws:jobId>123</uws:jobId>

 <uws:runId>test</uws:runId>

 <uws:ownerId xsi:nil="true" />

 <uws:phase>PENDING</uws:phase>

 <uws:quote>2013-01-01T12:34:56</uws:quote>

 <uws:startTime/>

 <uws:endTime/>

 <uws:executionDuration>600</uws:executionDuration>

 <uws:destruction>2013-02-01T00:00:00</uws:destruction>

 <uws:parameters>

 <uws:parameter id="LANG">ADQL</uws:parameter>

 <uws:parameter id="REQUEST">doQuery</uws:parameter>

 <uws:parameter id="QUERY">select * from tab</uws:parameter>

 </uws:parameters>

 <uws:results/>

</uws:job>

In addition to the UWS job metadata, DAL jobs are defined by a set of
parameter-value pairs. The client may add new parameters by modifying the
current list of parameters via the HTTP POST method:

POST FOO=bar http://example.com/base/async-jobs/123/parameters

The UWS standard allows parameters to be POSTed along with the initial job-
creation request, or POSTed to the job URL, or POSTed to the parameter list
(the parameters child resource) directly (as in the above example). This is easily
implemented by simply applying all UWS-specific parameters to the UWS job
itself and putting all remaining parameters into the parameter list. Job parameters
may only be POSTed while the job is in the PENDING phase; once execution
has been requested and the job is in any other phase, job parameters may not be
modified.

- 8 -

http://www.ivoa.net/xml/UWS/v1.0

Data Access Layer Interface

A concrete DAL service specification will specify one or more asynchronous job-
list resources and whether they are mandatory or optional. It may mandate a
specific resource name to support simple client use, or it can allow the resource
name to be described in the service metadata (see 2.5).

 2.2 Synchronous Execution: DALI-sync

Synchronous resources are resources that accept a request (a DAL job
description) and return the response (the result) directly. Synchronous requests
can be made using either the HTTP GET or POST method. The parameters used
to specify the job are the same for synchronous and asynchronous DAL jobs. A
synchronous job is created by a GET or POST request to a synchronous job list,
executed automatically, and the result returned in the response. The web service
is permitted to split the operation of a synchronous request into multiple HTTP
requests as long as it is transparent to standard clients. This means that the
service may use HTTP redirects (status code 302 or 303) and the Location
header to execute a synchronous job in multiple steps. For example, a service
may

• immediately execute and return the result in the response, or

• the response is an HTTP redirect (status code 303) and the Location (HTTP
header) will contain a URL; the client accesses this URL with the HTTP
GET method to execute the job and get the result

Clients must be prepared to get redirects and follow them (using normal HTTP
semantics) in order to complete requests.

A concrete DAL service specification will specify one or more synchronous job-
list resources and whether they are mandatory or optional. It may mandate a
specific resource name to support simple client use, or it can allow the resource
name to be described in the service capability metadata (see 2.5).

 2.3 Examples: DALI-examples

The DALI-examples resource returns a document with examples to help users
use a service effectively. The document must be a human-readable HTML
document with RDFa markup [19] to make it easy for software to extract the
examples. The details of the mircoformat are left to specific service
specifications; here we simply define the concept and fixed resource name for
the example document...

TBD: define the actual vocab/attributes for specifying examples or
example values for parameters? It probably just needs tagging
example param values and explanatory text.

- 9 -

Data Access Layer Interface

 2.4 Availability: VOSI-availability

VOSI-availability [9] defines a simple web resource that reports on the current
ability of the service to perform. In DAL services, this resource is always
accessed as a resource named availability that is a child of the base URL for the
service.

All DAL services must implement the /availability resource, which responds with
a dynamically generated document describing the current state of the service
operation, e.g.:

<?xml version="1.0" encoding="UTF-8"?>

<vosi:availability

 xmlns:vosi="http://www.ivoa.net/xml/VOSIAvailability/v1.0">

 <vosi:available>true</vosi:available>

 <vosi:note>service is accepting queries</vosi:note>

</vosi:availability>

 2.5 Capabilities: VOSI-capabilities

VOSI-capabilities [9] defines a simple web resource that returns an XML
document describing the service. In DAL services, this resource is always
accessed as a resource named capabilities that is a child of the base URL for the
service. The VOSI-capabilities should describe all the resources exposed by the
service, including which standards each resource implements.

All DAL services must implement the /capabilities resource. The following
capabilities document shows the three VOSI resources and a TAP base
resource:

<?xml version="1.0" encoding="UTF-8"?>

<vosi:capabilities

 xmlns:vosi="http://www.ivoa.net/xml/VOSICapabilities/v1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1">

 <capability standardID="ivo://ivoa.net/std/VOSI#capabilities">

 <interface xsi:type="vod:ParamHTTP" version="1.0">

 <accessURL use="full">

 http://example.com/tap/capabilities

 </accessURL>

 </interface>

- 10 -

http://example.com/tap/capabilities

Data Access Layer Interface

 </capability>

 <capability standardID="ivo://ivoa.net/std/VOSI#availability">

 <interface xsi:type="vod:ParamHTTP" version="1.0">

 <accessURL use="full">

 http://example.com/tap/availability

 </accessURL>

 </interface>

 </capability>

 <capability standardID="ivo://ivoa.net/std/VOSI#tables">

 <interface xsi:type="vod:ParamHTTP" version="1.0">

 <accessURL use="full">

 http://example.com/tap/tables

 </accessURL>

 </interface>

 </capability>

 <capability xmlns:tr="http://www.ivoa.net/xml/TAPRegExt/v1.0"

 standardID="ivo://ivoa.net/std/TAP" xsi:type="tr:TableAccess">

 <interface xsi:type="vod:ParamHTTP" role="std" version="1.0">

 <accessURL use="full">

 http://example.com/tap/

 </accessURL>

 </interface>

 <!-- service details from TAPRegExt go here -->

 </capability>

</vosi:capabilities>

Note that while this example shows the use of a registry extension schema (the
inline xmlns:tr=”http://www.ivoa.net/xml/TAPRegExt/v1.0” in the last capability
element) this is not required; services may be registered and described without
such an extension.

 2.6 Content: VOSI-tables

VOSI-tables [9] defines a simple web resource that returns an XML document
describing the content of the service. In DAL services which include it, this
resource is always accessed as a resource named tables that is a child of the
base URL for the service. The document format is defined by the
VODataService-1.1 [12] standard and allows the service to describe their content
as a tableset: schemas, tables, and columns.

- 11 -

http://example.com/tap/
http://example.com/tap/tables
http://example.com/tap/availability

Data Access Layer Interface

A concrete DAL service specification will specify if the /tables resource is
mandatory or optional.

<?xml version="1.0" encoding="UTF-8"?>

<vosi:tableset
xmlns:vosi="http://www.ivoa.net/xml/VOSITables/v1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1">

 <schema>

 <table type="output">

 <name>ivoa.ObsCore</name>

 <column>

 <name>dataproduct_type</name>

 <description>type of product</description>

 <ucd>meta.id;class</ucd>

 <utype>obscore:Obs.dataProductType</utype>

 <dataType xsi:type="vod:TAPType" size="128">

 VARCHAR</dataType>

 </column>

 <column>

 <name>calib_level</name>

 <description>calibration level (0,1,2,3)</description>

 <ucd>meta.id;class</ucd>

 <utype>obscore:Obs.calibLevel</utype>

 <dataType xsi:type="vod:TAPType">

 INTEGER</dataType>

 </column>

 ...

 </table>

</schema>

Note that the ellipsis (...) in the above example is not valid XML; it simply implies
more column elements would be included there.

- 12 -

Data Access Layer Interface

 3 Parameters
A DAL job is defined by a set of parameter-value pairs. Some of these
parameters have a standard meaning and are defined here, but most are defined
by the service specification or another related standard.

 3.1 General Rules

 3.1.1 Case Sensitivity

Parameter names are not case sensitive; a DAL service must treat upper-,
lower-, and mixed-case parameter names as equal. Parameter values are case
sensitive unless a concrete DAL service specification explicitly states that the
values of a specific parameter are to be treated as case-insensitive. For example,
the following are equivalent:

FOO=bar

Foo=bar

foo=bar

Unless explicitly stated by the service specification, these are not equivalent:

FOO=bar

FOO=Bar

FOO=BAR

In this document, parameter names are typically shown in uppercase for
typographical clarity, not as a requirement.

 3.1.2 Literal Values: Numbers, Boolean, Date, and Time
Integer numbers must be represented in a manner consistent with the
specification for integers in XML Schema Datatypes [10].

Real numbers must be represented in a manner consistent with the specification
for double-precision numbers in XML Schema Datatypes [10]. This
representation allows for integer, decimal and exponential notations.

Boolean values must be represented in a manner consistent with the
specification for Boolean in XML Schema Datatypes [10]. The values 0 and false
are equivalent. The values 1 and true are equivalent.

FOO=1

FOO=true

BAR=0

BAR=false

- 13 -

Data Access Layer Interface

Date and time values must be represented as ISO 8601 formatted strings with a
T character separating the date and time components. The time component is
optional, in which case the T separator is not used. Fractions of a second are
permitted but not required. For example:

2000-01-02T15:20:30.456

2001-02-03T04:05:06

2002-03-04

are all legal date or date plus time values. Values never include a timezone
indicator and are always interpreted as UTC [17]. In cases where values may be
expressed using Julian Date (JD) or Modified Julian Date (MJD), these follow the
rules for double precision numbers above and are not restricted to UTC.

 3.1.3 Multiple Values
Parameters may be assigned multiple values with multiple parameter=value pairs
using the same parameter name. Whether or not multiple values are permitted
and the meaning of multiple values is specified for each parameter by the
specification that defines the parameter. For example, the UPLOAD parameter
(3.2.5) permits multiple occurrences of the specified pair (table,uri), e.g.:

UPLOAD=foo,http://example.com/foo

UPLOAD=bar,http://example.com/bar

Services must respond with an error if the request includes multiple values for
parameters defined to be single-valued.

 3.2 Standard Parameters

 3.2.1 REQUEST

The REQUEST parameter specifies the type of the DAL job at the highest level.
In many cases, a service will have only one possible value. This parameter is still
used in such cases so that future versions or non-standard (site-specific) features
may support additional values.

A service must respond with an error if the REQUEST parameter is missing or
the value is not recognised.

The REQUEST parameter is always single-valued.

 3.2.2 VERSION

The VERSION parameter is used so the client can specify which version of the
service standard they are using to make the request. This allows implementers to
support multiple versions of a standard in a single web service and with a single

- 14 -

http://example.com/bar
http://example.com/foo

Data Access Layer Interface

resource for the DAL job list. If the client does not specify a value for the
VERSION, the service must interpret the request using the rules and semantics
of the latest recommended version supported by the service. For example, if a
TAP service supports version 1.0 and 1.1 then the client may make requests with
VERSION=1.0 or VERSION=1.1; if the VERSION is not specified in the client
request, the behaviour must be the same as VERSION=1.1). If version 1.2 of the
standard exists and is supported by the service but is not a recommendation, the
default is still VERSION=1.1 but the caller can include VERSION=1.2 to have the
request interpreted according to the draft specification.

The value of the version advertised by the service and requested by the client
must follow the IVOA version number scheme [14]. Accordign to [14], the version
number includes a publication date. For the purposes of this specification, these
date tags are not supported, i.e. Services only accept VERSION without dates.
Clients can thus not request the behaviour of a specific WD or PR. This is
intentional since implementation against unstable standards are not supposed to
be stable.

A service must respond with an error if the caller requests an unsupported
version using the VERSION parameter.

The VERSION parameter is always single-valued.

 3.2.3 RESPONSEFORMAT

The RESPONSEFORMAT parameter is used so the client can specify the format
of the response (e.g. the output of the job). For DALI-sync requests, this is the
content-type of the response. For DALI-async requests, this is the content-type of
the result resource(s) the client can retrieve from the UWS result list resource; if
a DALI-async job creates multiple results, the RESPONSEFORMAT should
control the primary result type, but details can be specific to individual service
specifications. While the list of supported values are specific to a concrete
service specification, the general usage is to support values that are content-
types (mimetypes) for known formats as well as shortcut symbolic values.

table type MIME type(s) short form

VOTable application/x-votable+xml
text/xml

votable

comma separated values text/csv csv

tab separated values text/tab-separated-values tsv

FITS file application/fits fits

pretty-printed text text/plain text

pretty-printed Web page text/html html

- 15 -

Data Access Layer Interface

A DAL service must accept a RESPONSEFORMAT parameter indicating a
format that the service supports and should fail (xref to error handling section)
where the RESPONSEFORMAT parameter specifies a format not supported by
the service implementation.

A concrete DAL service specification will specify any mandatory or optional
formats as well as new formats not listed above; it may also place limitations on
the structure for formats that are flexible. For example, a resource that responds
with tabular output only may impose a limitation that FITS files only contain FITS
tables, possibly only of specific types (ascii or binary).

If a client requests a format by specifying the mimetype (as opposed to one of
the short forms), the response that delivers that content must set that mimetype
in the Content-Type header. This is only an issue when a format has multiple
acceptable mimetypes (e.g. VOTable).

Individual DAL services (not just specifications) are free to support custom
formats by accepting non-standard values for the RESPONSEFORMAT
parameter.

The RESPONSEFORMAT parameter should not be confused with the FORMAT
parameter used in many DAL services. The latter is generally used as a query
parameter to search for data in the specified format; only in the case of TAP-1.0
are FORMAT and RESPONSEFORMAT equivalent.

The RESPONSEFORMAT parameter is always single-valued.

 3.2.4 MAXREC

For resources performing discovery (querying for an arbitrary number of records),
the resource must accept a MAXREC parameter specifying the maximum
number of records to be returned. If MAXREC is not specified in a request, the
service may apply a default value or may set no limit. If the size of the result
exceeds this value, the service must only return the requested number of rows. If
the result set is truncated in this fashion, it must include an overflow indicator as
specified in 4.4.1 .

The service must support the special value of MAXREC=0. This value indicates
that, in the event of an otherwise valid request, a valid response be returned
containing metadata, no results, and an overflow indicator as above. The service
is not required to execute the request and the overflow indicator does not
necessarily mean that there is at least one record satisfying the query. The
service may perform validation and may try to execute the request, in which case
a MAXREC=0 request can fail.

The MAXREC parameter is always single-valued.

- 16 -

Data Access Layer Interface

 3.2.5 UPLOAD

The UPLOAD parameter is used to reference read-only external tables via their
URI, to be uploaded for use as input tables to the query. The value of the
UPLOAD parameter is a table name-URI pair. For example:

UPLOAD=table1,http://example.com/t1

would define an input table table1 at the given URIs. Table names must be
simple strings made up of alphabetic, numeric, and the underscore characters
only and must start with an alphabetic character.

Services that implement UPLOAD must support http as a URI scheme (e.g. must
support treating an http URI as a URL). A VOSpace URI (vos:<something>) is a
more generic example of a URI that requires more service-side functionality;
support for the vos scheme is optional.

To upload a table inline, the caller must specify the UPLOAD parameter (as
above) using a special URI scheme “param”. This scheme indicates that the
value after the colon will be the name of the inline content. The content type used
is multipart/form-data, using a “file” type input element. The “name” attribute must
match that used in the UPLOAD parameter.

For example, in the POST data we would have this parameter:

UPLOAD=table3,param:t3

and this content:

Content-Type: multipart/form-data; boundary=AaB03

[...]

--AaB03x

Content-disposition: form-data; name="t3"; filename="t3.xml"

Content-type: application/x-votable+xml

[...]

--AaB03x

[...]

If inline table upload is used by a client, the client must POST both the UPLOAD
parameter and the associated inline content in the same request. Services that
implement table upload must support the param scheme for inline uploads.

In principle, any number of tables can be uploaded using the UPLOAD parameter
(see for details) and any combination of URI schemes supported by the service
as long as they are assigned unique table names in the request. For example:

UPLOAD=table1,http://example.com/t1.xml

- 17 -

http://example.com/t1

Data Access Layer Interface

UPLOAD=table2,vos://example.authority!tempSpace/t2.xml

UPLOAD=table3,param:t3

Services may limit the size and number of uploaded tables; if the service refuses
to accept the entire table it must respond with an error as described in 4.2 .
Specific service specifications must specify how uploaded tables are referenced
in other request parameters (for example, in a query), and interpreted.

 3.2.6 RUNID

The service should implement the RUNID parameter, used to tag service
requests with the identifier of a larger job of which the request may be part. The
RUNID value is a string with a maximum length of 64 characters.

TBD: do we need to place a lmit on the length? is 64 enough?

For example, if a cross match portal issues multiple requests to remote services
to carry out a cross-match operation, all would receive the same RUNID, and the
service logs could later be analyzed to reconstruct the service operations initiated
in response to the job. The service should ensure that RUNID is preserved in
any service logs and should pass on the RUNID value in calls to other services
made while processing the request.

The RUNID parameter is always single-valued.

- 18 -

Data Access Layer Interface

 4 Responses

All DAL service requests eventually result in one of three kinds of responses:
successful HTTP status code (200) and a service- and resource-specific
representation of the results, an HTTP status code (??) and an unspecified error
document, or a redirect HTTP status code (302 or 303) with a URL in the HTTP
header.

 4.1 Successful Requests

Successfully executed requests should result in a response with HTTP status
code 200 (OK) and a response in the format requested by the client (see 3.2.3)
or in the default format for the service. The service should set the following HTTP
headers to the correct values where possible.

Content-Type mimetype of the response

Content-Encoding encoding/compression of the response

Content-Length size of the response in bytes (generally not known for
dynamically generated and streamed response)

Last-Modified timestamp when the resource was last changed (not
applicable to dynamically generated response)

For jobs executed using a DALI-async resource, the result(s) must be made
available as child resources of the result list and directly accessible there. For
jobs that inherently create a fixed result, service specifications may specify the
name of the result explicitly. For example, TAP-1.0 has a single result and it
must be named result in the result list and be directly accessible by that name,
e.g.:

GET http://example.com/base/joblist/123/results/result

For concrete DAL service specifications where multiple result files may be
produced, the specification may dictate the names or it may leave it up to
implementations to chose suitable names.

 4.2 Errors

If the service detects an exceptional condition, it must return an error document
with an appropriate HTTP-status code. DAL services distinguish three classes of
errors:

• Errors in the use of the HTTP protocol

- 19 -

http://example.com/base/joblist/123/results/result

Data Access Layer Interface

• Errors in the use of the specific DAL protocol, including an invalid request

• Errors caused by a failure of the service to complete a valid request

Error documents for HTTP-level errors are not specified since responses to these
errors may be generated by service containers and cannot be controlled by
service implementations. There are several cases where a DAL service could
return an HTTP error. First, a DALI-async resource return a 404 (not found) error
if the client accesses a job within the UWS joblist that does not exist, or accesses
a child resource of the job that does not exist (e.g. the error resource of a job that
has not run and failed, or a specific result resource in the result list that does not
exist). Second, access to a resource could result in an HTTP 401 (not
authorized) response if authentication is required or an HTTP 403 (forbidden)
error if the client is not allowed to access the requested resource.

Error documents describing errors in use of the DAL service protocol must be
VOTable documents as described in [11]; any result-format specified in the
request is ignored. In all cases, these are errors that occur when the job is
executed and do not override any error behaviour for a UWS resource which
specifies the behaviour and errors associated with interacting with the job itself.

If the invalid job is being executed using a DALI-async resource, the error
document must be accessible from the <DALI-async>/<jobid>/error resource
(specified by UWS) and when accessed via that resource it must be returned with
an HTTP status code 200, e.g.:

GET http://example.com/base/joblist/123/error

If the error document is being returned directly after a DALI-sync request, the
service should use a suitable HTTP status code (4xx or 5xx) to describe the
failure and include the error document in the body of the response. The Content-
Type header will tell the client that there is a VOTable error document in the body
of the response.

Error documents describing the failure of the service to execute a valid job are
returned as above, but the VOTable document must ??? to indicate that the
request was valid but failed due to (i) an internal limitation or (ii) a transient failure
and may succeed in the future.

TBD: How do we generically divide errors into these 3 types:
invalid, internal limitation/refusal, or transient failure?

 4.3 Redirection

A concrete DAL service specification may require that HTTP redirects (302 or
303) be used to communicate the location of an alternate resource which should
be accessed by the client via the HTTP GET method. For example, the UWS

- 20 -

http://example.com/base/joblist/123/error

Data Access Layer Interface

pattern used for DALI-async (2.1) requires this behaviour. Even when not
required, concrete DAL service specifications must allow implementors to use
redirects and clients should follow these redirects using normal HTTP semantics
[5].

 4.4 Use of VOTable

VOTable is a general format. In DAL services we require that it be used in a
particular way. The result VOTable document must comply with VOTable v1.2 or
greater [11]. For columns containing coordinate values, the coordinate system
metadata should be provided as described in [15]. For columns containing
photometric values (including fluxes), the system should be described as in [16].

For resources where the job is a query, the VOTable must contain a
RESOURCE element identified with the attribute type="results", containing a
single TABLE element with the results of the query. Additional RESOURCE
elements may be present, but the usage of any such elements is not defined
here. The RESOURCE element must contain, before the TABLE element, an
INFO element with attribute name = "QUERY_STATUS". The value attribute
must contain one of the following values:

OK
the query executed successfully and the result is included in the
resource

ERROR
an error was detected at the level of the protocol, the job failed
to execute, or an error occured while writing the table data

OVERFLOW
the query executed successfully, the result is included in the
resource, and the result was truncated at MAXREC rows

The content of the INFO element conveying the status should be a message
suitable for display to the user describing the status.

<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="QUERY_STATUS" value="OK">Successful query</INFO>

<INFO name=”QUERY_STATUS" value="ERROR">

value out of range in POS=45,91

</INFO>

 4.4.1 Overflow

If an overflow occurs (result exceeds MAXREC), the service must include an
INFO element in the RESOURCE with name=”QUERY_STATUS” and the

- 21 -

Data Access Layer Interface

value=”OVERFLOW”. If the initial info element (above) specified the overflow, no
further elements are needed, e.g.:

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”OVERFLOW”/>

...

<TABLE>...</TABLE>

</RESOURCE>

If the initial info element specified a status of OK then the service must append
an INFO element for the overflow after the table, e.g.:

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”OK”/>

...

<TABLE>...</TABLE>

<INFO name=”QUERY_STATUS” value=”OVERFLOW”/>

</RESOURCE>

In the above examples, the TABLE should have exactly MAXREC rows.

 4.4.2 Errors

If an error occurs, the service must include an INFO element with
name=”QUERY_STATUS” and the value=”ERROR”. If the initial info element
(above) specified the error, no further elements are needed, e.g.:

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”ERROR”/>

...

<TABLE>...</TABLE>

</RESOURCE>

If the initial info element specified a status of OK then the service must append
an INFO element for the overflow after the table, e.g.:

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”OK”/>

...

<TABLE>...</TABLE>

<INFO name=”QUERY_STATUS” value=”ERROR”>

unexpected IO error while converting something

</INFO>

</RESOURCE>

- 22 -

Data Access Layer Interface

The use of trailing INFO element allows a service to stream output and still report
overflows or errors to the client. The content of these trailing INFO elements is
optional and intended for users; client software should not depend on it.

 4.4.3 Additional Information

Additional INFO elements may be provided, e.g., to echo the input parameters
back to the client in the query response (a useful feature for debugging or to self-
document the query response), but clients should not depend on these. For
example:

<RESOURCE type=”results”>

<INFO name=”QUERY_STATUS” value=”ERROR”>

missing REQUEST parameter

</INFO>

<INFO name=”standardID” value=”TAP”/>

<INFO name=”VERSION” value=”1.0”/>

...

</RESOURCE>

The following names for INFO elements should be used if applicable, but this list
is not definitive.

name meaning example value

standardID IVOA standardID for the service
specification

ivo://ivoa.net/std/TAP

VERSION Version number used to interpret
and process request (3.2.2)

1.0

CITATION Reference to a publication that
can/should be referenced if the
result is used

Hubble, E. P., 1915, ApJ
42, 283

TBD: It would be nice to use an INFO param with name attribute
CITATION, a second attribute saying what kind of vaue there was,
and then put the value in as text content of the INFO element.
Possible? It could in thery permit bibcodes, ADS uris/urns, DOIs, or
free-form references as above, maybe even in a usable enough
fashion.

- 23 -

Data Access Layer Interface

 5 References
[1] D. Tody, F. Bonnarel, M. Dolensky, J. Salgado, DAL-WG, IVOA Data Access

Layer Service Architecture and Standard Profile, IVOA Note 5 October 2008.
http://www.ivoa.net/internal/IVOA/SiaInterface/DAL2_Architecture.pdf

[2] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF
RFC 2119. http://www.ietf.org/rfc/rfc2119.txt

[3] T. Berner-Lee, R. Fielding L. Masinter, Uniform Resource Identifiers (URI):
Generic Syntax, IETF RFC 2396. http://www.ietf.org/rfc/rfc2396.txt

[4] P. Biron & A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/

[5] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext Transfer Protocol – HTTP/1.1, IETF RFC 2616. http://www.rfc-
editor.org/rfc/rfc2616.txt

[6] N. Freed & N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, IETF RFC 2045.
http://www.ietf.org/rfc/rfc2045.txt

[7] Y. Shafranovich, Common Format and MIME Type for Comma-Separated
Values (CSV) Files, IETF RFC 4180. http://www.ietf.org/rfc/rfc4180.txt

[8] IANA, MIME Media Types, http://www.iana.org/assignments/media-
types/text/tab-separated-values

[9] M. Graham & G. Rixon (ed.), GWS-WG, IVOA Support Interfaces Version 1.0,
IVOA Recommendation, 31 May 2011.
http://www.ivoa.net/Documents/VOSI/

[10] P. Harrison & G. Rixon, Universal Worker Service Version 1.0 , IVOA
Recommendation, 10 October 2010. http://www.ivoa.net/Documents/UWS/

[11] F. Ochsenbein (ed.), R. Williams, VOTable Format Definition Version 1.2,
IVOA Recommendation 30 November 2009.
http://www.ivoa.net/Documents/VOTable/1.2

[12] R, Plante (ed.), A. Stébé, K. Benson, P. Dowler, M. Graham, G. Greene, P.
Harrison, G. Lemson, A. Linde, G. Rixon & IVOA Registry-WG,
VODataService: a VOResource Schema Extension for Describing Collections
and Services Version 1.1. IVOA Recommendation, 02 December 2010
http://www.ivoa.net/Documents/VODataService/1.1

[13] P. Dowler, G. Rixon, D. Tody, DAL-WG, Table Access Protocol Version 1.0,
IVOA Recommendation 27 March 2010.
http://www.ivoa.net/Documents/TAP/1.0

[14] R. J. Hanisch, C. Arviset, F. Genova, B. Rhino, IVOA Document Standards,
IVOA Recommendation 13 April 2010.
http://www.ivoa.net/Documents/ DocStd/

- 24 -

http://www.ivoa.net/Documents/VOTable/1.2
http://www.ivoa.net/Documents/TAP/1.0
http://www.ivoa.net/Documents/VODataService/1.1
http://www.ivoa.net/Documents/VOTable/1.2
http://www.ivoa.net/Documents/VOSI/1.0
http://www.iana.org/assignments/media-types/text/tab-separated-values
http://www.iana.org/assignments/media-types/text/tab-separated-values
http://www.ietf.org/rfc/rfc4180.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2119.txt

Data Access Layer Interface

[15] M. Demleitner, F. Ochsenbein, J. McDowell, A. Rots, Space-Time Coordinate
Metadata in VOTables, IVOA Note 18 June 2010

[16] J. Salgado (ed.), C. Rodrigo, p. Osuna (ed.), M. Allen, M. Louys, J. McDowell, D.
Baines, J. Maiz, E. Hatzimnaoglou, S. Derriere, IVOA Photometry Data Model
Version 1.0, IVOA Proposed Reccomendation 17 May 2012

[17] A. H. Rots (ed.), Space-Time Coordinate Metadata for the Virtual Observatory
Version 1.33, IVOA Recommendation 30 October 2007
http://www.ivoa.net/Documents/STC/1.33

[18] R.Fielding, Architectural Styles and the Design of Network-based Software
Architectures , PhD thesis, University of California Irvine, 2000

[19] M. Sporny (ed.) RDFa Lite 1.1, W3C Recommentation 07 June 2012,
http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/

- 25 -

http://www.ivoa.net/Documents/STC/1.33

	1 Introduction
	1.1 General Principles
	1.2 The Role in the IVOA Architecture
	1.3 Example Usage of DALI Specification

	2 Resources
	2.1 Asynchronous Execution: DALI-async
	2.2 Synchronous Execution: DALI-sync
	2.3 Examples: DALI-examples
	2.4 Availability: VOSI-availability
	2.5 Capabilities: VOSI-capabilities
	2.6 Content: VOSI-tables

	3 Parameters
	3.1 General Rules
	3.1.1 Case Sensitivity
	3.1.2 Literal Values: Numbers, Boolean, Date, and Time
	3.1.3 Multiple Values

	3.2 Standard Parameters
	3.2.1 REQUEST
	3.2.2 VERSION
	3.2.3 RESPONSEFORMAT
	3.2.4 MAXREC
	3.2.5 UPLOAD
	3.2.6 RUNID

	4 Responses
	4.1 Successful Requests
	4.2 Errors
	4.3 Redirection
	4.4 Use of VOTable
	4.4.1 Overflow
	4.4.2 Errors
	4.4.3 Additional Information

	5 References

