
International
Virtual
Observatory

Alliance

Data Access Layer Interface

Version 1.1

IVOA Working Draft 2015-10-27

Working group
Data Access Layer Working Group

This version
http://www.ivoa.net/documents/DALI/20151027

Latest version
http://www.ivoa.net/documents/DALI

Previous versions
DALI-1.0

Author(s)
Patrick Dowler, Markus Demleitner, Mark Taylor, Doug Tody

Editor(s)
Patrick Dowler

Abstract
This document describes the Data Access Layer Interface (DALI). DALI

defines the base web service interface common to all Data Access Layer
(DAL) services. This standard defines the behaviour of common resources,
the meaning and use of common parameters, success and error responses,
and DAL service registration. The goal of this specification is to define the
common elements that are shared across DAL services in order to foster con-
sistency across concrete DAL service specifications and to enable standard
re-usable client and service implementations and libraries to be written and
widely adopted.

http://www.ivoa.net/documents/DALI/20151027
http://www.ivoa.net/documents/DALI
http://www.ivoa.net/Documents/DALI/1.0

Status of This Document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work in
progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

Contents

1 Introduction 4
1.1 Role within the VO Architecture 4
1.2 Example Usage of the DALI Specification 5

2 Resources 5
2.1 Asynchronous Execution: DALI-async 7
2.2 Synchronous Execution: DALI-sync 8
2.3 DALI-examples . 9

2.3.1 name property . 10
2.3.2 capability property . 11
2.3.3 generic-parameter property 11
2.3.4 continuation property 12

2.4 Availability: VOSI-availability 12
2.5 Capabilities: VOSI-capabilities 13
2.6 Tables: VOSI-tables . 14

3 Parameters 14
3.1 Case Sensitivity . 15
3.2 Multiple Values . 15
3.3 Literal Values . 16

3.3.1 Numbers . 16
3.3.2 Boolean . 16
3.3.3 Timestamp . 16
3.3.4 Intervals . 17
3.3.5 Point . 18
3.3.6 Circle . 18

2

http://www.ivoa.net/Documents/

3.3.7 Polygon . 18
3.3.8 More geometry? . 19

3.4 Standard Parameters . 19
3.4.1 REQUEST . 19
3.4.2 VERSION . 19
3.4.3 RESPONSEFORMAT 19
3.4.4 MAXREC . 21
3.4.5 UPLOAD . 21
3.4.6 RUNID . 23

4 Responses 23
4.1 Successful Requests . 23
4.2 Errors . 24
4.3 Redirection . 25
4.4 Use of VOTable . 25

4.4.1 Overflow . 27
4.4.2 Errors . 27
4.4.3 Additional Information 28

A Changes 28
A.1 WC-DALI-1.1-20160415 . 28
A.2 WD-DALI-1.1-20151027 . 29
A.3 PR-DALI-1.0-20130919 . 29
A.4 PR-DALI-1.0-20130521 . 30
A.5 WD-DALI-1.0-20130212 . 31

Status of This Document

This document has been produced by the Data Access Layer Working Group.
It has been reviewed by IVOA Members and other interested parties,

and has been endorsed by the IVOA Executive Committee as an IVOA
Recommendation. It is a stable document and may be used as reference
material or cited as a normative reference from another document. IVOA’s
role in making the Recommendation is to draw attention to the specification
and to promote its widespread deployment. This enhances the functionality
and interoperability inside the Astronomical Community.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/Documents/.

3

Figure 1: Architecture diagram for this document

1 Introduction

The Data Access Layer Interface (DALI) defines resources, parameters, and
responses common to all DAL services so that concrete DAL service specifi-
cations need not repeat these common elements.

1.1 Role within the VO Architecture

DALI defines how DAL service specifications use other IVOA standards as
well as standard internet designs and protocols. Fig. 1 shows the role this
document plays within the IVOA architecture (Arviset et al., 2010).

Astronomical coordinate values accepted and returned by DAL services
use a string representation of the Space-Time Coordinates (Rots, 2007) data
model. The concrete DAL service specification defines whether the returned
resources are serializations of a particular standard data model. For pre-
serving backwards compatibility or to enable service-specific use cases, the
concrete DAL service specification may explicitly specify the use of ad-hoc
Utypes.

4

A registry extension schema, usually extending VODataService (Plante
et al., 2010), may be used to describe the capabilities of a DAL service.
This schema is used within the VOSI-capabilities (Grid and Web Services
Working Group, 2011) resource and in registry records for the service.

1.2 Example Usage of the DALI Specification

The DALI specification defines common elements that make up Data Access
Layer (DAL) services. DAL service specifications will refer to the sections
in this document by name rather than include all the explanatory text. For
example, suppose a document defines a service that stacks FITS images
asynchronously, the specification could say that the service has the following
resources:

• a DALI-async resource that accepts one or more UPLOAD parameters
(section 3.4.5) where the resources are FITS images; the resource could
also define a fixed set of error messages for anticipated failure modes

• a VOSI-availability resource (section 2.4)

• a VOSI-capabilities resource (section 2.5) conforming to a specified
registry extension schema

and would have to define the registry extension schema to be used to reg-
ister services and to implement the VOSI-capabilities resource. Most of the
service specification would be in defining the semantics (possibly controllable
via additional input parameters) of the computations to be performed and
in defining the extension schema to describe service functionality and limits
(e.g., maximum input or result image sizes, result retention time and poli-
cies). The registry extension schema may be part of the service specification
or a separate document.

2 Resources

DAL services are normally implemented as HTTP REST (Fielding, 2000)
web services, although other transport protocols could be used in the future.
The primary resource in a DAL service is a job. A DAL job is defined by
parameters (section 3) and can be executed either synchronously or asyn-
chronously. A concrete service specification defines the job parameters and
the manner of execution is defined by separate resources below.

5

In addition to job list resources, DAL services also implement several Vir-
tual Observatory Support Interface (Grid and Web Services Working Group,
2011) resources to describe service availability, capabilities, and content.

A concrete DAL service must define at least one DALI-async or DALI-
sync resource. It may define both with the same job semantics (e.g. TAP-1.0
(Dowler et al., 2010)) or it may define one with one kind of job and the other
with a separate kind of job (a service that does some things synchronously
and others asynchronously).

The following table summarises the resources that are required in all
concrete DAL service specifications (and thus in all DAL services) and which
kinds of resources are defined and specified as required or optional in a
concrete specification.

resource type resource name required

DALI-sync service specific service specific
DALI-async service specific service specific
DALI-examples /examples no
VOSI-availability service specific yes
VOSI-capabilities /capabilities yes
VOSI-tables service specific service specific

The resource name is the path (relative to the base URL of the ser-
vice). All DALI and VOSI-tables resources must be siblings of the VOSI-
capabilities resource, but concreete service specifications should not con-
strain the names of these resources further. The relative path limitation
enables a client with just the URL for a single resource to find the VOSI-
capabilities resource and then discover all the capabilities provided by the
service. The naming freedom allows implementers to provide alternate paths
to resources; this is needed in order to provide both anonymous and authen-
ticated access to a caability.

The URL for the VOSI-availability is not constrained; it may be a sibling
(e.g. /availability) or it may be URLs hosted on a different server (e.g. VOSI-
availability may be implemented as a completely external resource that tests
the service from the user perspective).

A simple query-only DAL service like ConeSearch can be easily described
as having a single DALI-sync resource where the job is a query and the
response is the result of the query.

6

2.1 Asynchronous Execution: DALI-async

Asynchronous resources are resources that represent a list of asynchronous
jobs as defined by the Universal Worker Service (UWS) pattern (Harrison
and Rixon, 2010). Requests can create, modify, and delete jobs in the job
list. UWS also specifies special requests to modify the phase of the job (cause
the job to execute or abort).

As specified in UWS, a job is created by using the HTTP POST method
to modify the job list. The response will always be an HTTP redirect (status
code 303) and the Location (HTTP header) will contain the URL to the job
(a child resource of the job list).

POST http://example.com/base/async-jobs

The response will include the HTTP status code 303 (See Other) and
a header named Location with a URL to the created job as a value, for
example:

Location: http://example.com/base/async-jobs/123

The job description (an XML document defined by the UWS schema) can
always be retrieved by accessing the job URL with the HTTP GET method:

GET http://example.com/base/async-jobs/123

<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0">
<uws:jobId>123</uws:jobId>
<uws:runId>test</uws:runId>
<uws:ownerId xsi:nil="true" />
<uws:phase>PENDING</uws:phase>
<uws:quote>2013−01−01T12:34:56</uws:quote>
<uws:startTime/>
<uws:endTime/>
<uws:executionDuration>600</uws:executionDuration>
<uws:destruction>2013−02−01T00:00:00</uws:destruction>
<uws:parameters>
<uws:parameter id="LANG">ADQL</uws:parameter>
<uws:parameter id="REQUEST">doQuery</uws:parameter>
<uws:parameter id="QUERY">select ∗ from tab</uws:parameter>

</uws:parameters>
<uws:results/>

</uws:job>

7

In addition to the UWS job metadata, DAL jobs are defined by a set
of parameter-value pairs. The client may include parameters in the initial
POST that creates a job or it may add additional paramaters by a POST to
the current list of parameters, for example:

http://example.com/base/async-jobs/123/parameters

DALI-async resources may provide other ways to interact with jobs as
specified in current or future UWS specifications, with the following excep-
tion: the UWS-1.0 standard may be interpreted to allow POSTing of job
parameters to the job URL, but DALI-async resources must not accept job
parameters at this URL.

Job parameters may only be POSTed while the job is in the PENDING
phase; once execution has been requested and the job is in any other phase,
job parameters may not be modified.

A concrete DAL service specification will specify zero or more asyn-
chronous job submission resources and whether they are mandatory or op-
tional. It may mandate a specific resource name to support simple client use,
or it can allow the resource name to be described in the service metadata
(Section 2.5).

2.2 Synchronous Execution: DALI-sync

Synchronous resources are resources that accept a request (a DAL job de-
scription) and return the response (the result) directly. Synchronous requests
can be made using either the HTTP GET or POST method. If a specific
type of job is exposed through both DALI-async and DALI-sync resources
(e.g. TAP queries), then the parameters used to specify the job are the same
for this pair of (synchronous and asynchronous) jobs. Service specifications
may also specify different types of jobs on different resources, which would
have different job parameters.

A synchronous job is created by a GET or POST request to a synchronous
job list, executed automatically, and the result returned in the response. The
web service is permitted to split the operation of a synchronous request into
multiple HTTP requests as long as it is transparent to standard clients. This
means that the service may use HTTP redirects (status code 302 or 303)
and the Location header to execute a synchronous job in multiple steps. For
example, a service may

• immediately execute and return the result in the response, or

8

• the response is an HTTP redirect (status code 303) and the Location
(HTTP header) will contain a URL; the client accesses this URL with
the HTTP GET method to execute the job and get the result

Clients must be prepared to get redirects and follow them (using normal
HTTP semantics) in order to complete requests.

A concrete DAL service specification will specify zero or more syn-
chronous job submission resources and whether they are mandatory or op-
tional. It may mandate a specific resource name to support simple client use,
or it can allow the resource name to be described in the service capability
metadata (Section 2.5).

2.3 DALI-examples

The DALI-examples resource returns a document with usage examples or
similar material to the user. In DAL services, this resource is always ac-
cessed as a resource named examples that is a child of the base URL for
the service. The following specification is intended to make sure the content
is usable for both machines and humans. As such, the DALI-examples re-
source contains additional markup conforming to the RDFa 1.1 Lite (Sporny,
2012) specification, which defines the following attributes: vocab, typeof,
property, resource, and prefix (although we do not include any use of the
prefix attribute).

The DALI-examples capability identifier is:

ivo://ivoa.net/std/DALI#examples

DAL services may implement the /examples resource and include it in
the capabilities described by the VOSI-capabilities resource (Section 2.5); if
they do not, retrieving its URL must yield a 404 HTTP error code.

The document at /examples must be well-formed XML. This restriction
is imposed in order to let clients parse the document using XML parsers
rather than much more complex parsers (e.g. HTML5 parsers). It is there-
fore advisable to author it in XHTML, although this specification does not
prescribe any document types.

The document should be viewable with “common web browsers”. Javascript
or CSS must not be necessary to find and interpret the elements specified be-
low. Apart from that, service operators are free to include whatever material
or styling they desire in addition and within the example elements defined
here.

9

The elements containing examples must be descendants of an element
that has a vocab attribute with the value equal to the DALI-examples ca-
pability identifier (above), for example:

<div vocab="ivo://ivoa.net/std/DALI#examples">
...
</div>

No other vocab attributes are allowed in the document. Each example
resides in an element that has a typeof attribute with the value example.
All such elements must have an id attribute to allow external referencing via
fragments and a resource attribute with a reference pointing to the element
itself. As an example,

<div id="x" resource="#x" typeof="example"> ... </div>

located inside the element having the vocab attribute would contain an ex-
ample referrable via the x fragment identifier. The div element is a suitable
HTML element to hold an example.

The content of the example is expressed using the property attribute.
For DALI-examples, we define the following values for the property at-
tribute:

• name

• capability

• generic-parameter

• continuation.

Each example must include one name. DAL service specifications may
define additional properties so they can mark up additional information in
their examples.

In principle, any element permitted by the document type can include
the RDFa attributes, so authors may re-use existing markup intended for
display. Alternatively, the span element is a good choice when the example
values are included in surrounding text and the author does not want any
special rendering to be applied by the machine-readable additions.

2.3.1 name property

The content of this element should be suitable for display within a space-
limited label in user interface and still give some idea about the meaning of

10

the example. In XHTML, a head element (h2, say) would usually be a good
choice for the example name, for example:

<h2 property="name">Synchronous TAP query</h2>

2.3.2 capability property

The capability property for an example specifies which service capability the
example is to be used with. For example, if the text is describing how to use
a SODA-1.0 service, the example could contain:

ivo://ivoa.net/std/SODA#sync−1.0

IVOA standard service capabilities are defined as URIs, so example docu-
ments may want to show the URI or show more user-friendly text depending
on the expected audience for the document. For specifications that do not
define specific capability identifiers, the IVOID for the specification itself
should be used.

2.3.3 generic-parameter property

Request parameters are included within the example by using the generic-
parameter property. The element must also be assigned a typeof attribute
with value of keyval. Within this element, the document must include a
pair of elements with property attributes valued key and value, where the
plain-text content are the parameter name and value respectively. Multiple
generic-parameter(s) are permitted, for example:

REQUEST
doQuery

LANG
ADQL

QUERY
SELECT ∗ from tap_schema.tables

11

2.3.4 continuation property

If the examples are spread over multiple linked documents, the links to doc-
uments with additional examples must be within the parent element defin-
ing the vocab attribute and the link elements must contain the following
additional attributes: a property attribute with the value continuation, a
resource attribute with an empty value (referring to the current document),
and the href attribute with the URL of another document formatted as
above (i.e. another collection of examples that clients should read to collect
the full set of examples).
<div vocab="ivo://ivoa.net/std/DALI#examples">
<div id="x" resource="#x" typeof="example">
<h2 property="name">Synchronous TAP query</h2>
<p property="capability">ivo://ivoa.net/std/TAP/v1.0</p>
<p property="generic-parameter" typeof="keyval">

REQUEST=doQuery

</p>
<p property="generic-parameter" typeof="keyval">

LANG=ADQL

</p>
<p property="generic-parameter" typeof="keyval">

QUERY=SELECT ∗ from tap_schema.tables

</p>
</div>
<a property="continuation"

href="simple_examples.html">Simple examples
<a property="continuation"

href="fancy_examples.html">Fancy examples
</div>

In the above example, the two linked documents would also contain some
element with a vocab and examples as described above.

2.4 Availability: VOSI-availability

VOSI-availability (Grid and Web Services Working Group, 2011) defines a
simple web resource that reports on the current ability of the service to
perform.

All DAL services must implement the VOSI-availability resource and
provide a description of this capability in the VOSI-capabilities document.
The VOSI-availability resource is intended to respond with a dynamically

12

generated document describing the current state of the service operation,
e.g.:
<?xml version="1.0" encoding="UTF-8"?>
<vosi:availability
xmlns:vosi="http://www.ivoa.net/xml/VOSIAvailability/v1.0">
<vosi:available>true</vosi:available>
<vosi:note>service is accepting queries</vosi:note>

</vosi:availability>

2.5 Capabilities: VOSI-capabilities

VOSI-capabilities (Grid and Web Services Working Group, 2011) defines a
simple web resource that returns an XML document describing the service.
In DAL services, this resource is always accessed as a resource named capabil-
ities that is a child of the base URL for the service. The VOSI-capabilities
should describe all the resources exposed by the service, including which
standards each resource implements.

All DAL services must implement the /capabilities resource. The follow-
ing capabilities document shows the three VOSI resources and a TAP base
resource:
<?xml version="1.0" encoding="UTF-8"?>
<vosi:capabilities

xmlns:vosi="http://www.ivoa.net/xml/VOSICapabilities/v1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1">

<capability standardID="ivo://ivoa.net/std/VOSI#capabilities">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">

http://example.com/tap/capabilities
</accessURL>

</interface>
</capability>

<capability standardID="ivo://ivoa.net/std/VOSI#availability">
<interface xsi:type="vod:ParamHTTP" version="1.0">
<accessURL use="full">

http://example.com/tap/availability
</accessURL>

</interface>
</capability>

<capability standardID="ivo://ivoa.net/std/VOSI#tables">
<interface xsi:type="vod:ParamHTTP" version="1.0">

13

<accessURL use="full">
http://example.com/tap/tables

</accessURL>
</interface>

</capability>

<capability xmlns:tr="http://www.ivoa.net/xml/TAPRegExt/v1.0"
standardID="ivo://ivoa.net/std/TAP" xsi:type="tr:TableAccess">
<interface xsi:type="vod:ParamHTTP" role="std" version="1.0">
<accessURL use="full">

http://example.com/tap/
</accessURL>

</interface>
<!-- service details from TAPRegExt go here -->

</capability>
</vosi:capabilities>

Note that while this example shows the use of a registry extension schema
(the inline xmlns:tr="http://www.ivoa.net/xml/TAPRegExt/v1.0" in the
last capability element) this is not required; services may be registered and
described without such an extension. The use of standardID – which should
contain the IVOID of the standard a capability adheres to – does not imply
a particular (or any) xsi:type be included.

2.6 Tables: VOSI-tables

VOSI-tables (Grid and Web Services Working Group, 2011) defines a sim-
ple web resource that returns an XML document describing the content of
the service. The document format is defined by the VOSI (Grid and Web
Services Working Group, 2011) standard and allows the service to describe
their content as a tableset: schemas, tables, and columns.

A concrete DAL service specification will specify if the VOSI-tables re-
source is permitted or required and may restrict the resource name or lo-
cation. The current VOSI-tables specification has some scalablity issues for
services with many or large tables, so that specification is subject to change
in future. Since DAL services with a VOSI-tables resource will specify in the
capabilities which version they are using, DAL services can make use of new
versions without change to the DAL service specification.

3 Parameters

A DAL job is defined by a set of parameter-value pairs. Some of these
parameters have a standard meaning and are defined here, but most are

14

defined by the service specification or another related standard.

3.1 Case Sensitivity

Parameter names are not case sensitive; a DAL service must treat upper-,
lower-, and mixed-case parameter names as equal. Parameter values are
case sensitive unless a concrete DAL service specification explicitly states
that the values of a specific parameter are to be treated as case-insensitive.
For example, the following are equivalent:

FOO=bar
Foo=bar
foo=bar

Unless explicitly stated by the service specification, these are not equiv-
alent:

FOO=bar
FOO=Bar
FOO=BAR

In this document, parameter names are typically shown in upper-case for
typographical clarity, not as a requirement.

3.2 Multiple Values

Parameters may be assigned multiple values with multiple parameter=value
pairs using the same parameter name. Whether or not multiple values are
permitted and the meaning of multiple values is specified for each parameter
by the specification that defines the parameter. For example, the UPLOAD
parameter (section 3.4.5) permits multiple occurrences of the specified pair
(table,uri), e.g.:

UPLOAD=foo,http://example.com/foo
UPLOAD=bar,http://example.com/bar

Services must respond with an error if the request includes multiple values
for parameters defined to be single-valued.

15

3.3 Literal Values

In this section we specify how values are to be expressed. These literal values
are used as input or output from DAL services: as parameter values when in-
voking simple services, as data values in response documents (e.g. VOTable),
etc. We define some general purpose values for the xtype attribute of the
VOTable FIELD and PARAM elements for simple structured values: interval,
point, circle, and polygon (see below).

3.3.1 Numbers

Integer numbers must be represented in a manner consistent with the speci-
fication for integers in XML Schema Datatypes (Biron and Malhotra, 2004).

Real numbers must be represented in a manner consistent with the speci-
fication for double-precision numbers in XML Schema Datatypes (Biron and
Malhotra, 2004). This representation allows for integer, decimal and expo-
nential notations.

3.3.2 Boolean

Boolean values must be represented in a manner consistent with the specifi-
cation for Boolean in XML Schema Datatypes (Biron and Malhotra, 2004).
The values 0 and false are equivalent. The values 1 and true are equivalent.

FOO=1
FOO=true

BAR=0
BAR=false

3.3.3 Timestamp

Date and time values must be represented using the convention established
for FITS (Hanisch et al., 2001) and STC (Rots, 2007):

YYYY-MM-DD[’T’hh:mm:ss[.SSS]]

where the T is a character separating the date and time components.
The time component is optional, in which case the T separator is not used.
Fractions of a second are permitted but not required. For example:

2000-01-02T15:20:30.456
2001-02-03T04:05:06
2002-03-04

16

are all legal date or date plus time values. Values never include a time
zone indicator and are always interpreted as follows. In cases where values
may be expressed using Julian Date (JD) or Modified Julian Date (MJD),
these follow the rules for double precision numbers above and may have ad-
ditional metadata as described in the VOTable standard (Ochsenbein et al.,
2013). All date-time values (formatted string, JD, and MJD) shall be in-
terpreted as referring to time scale UTC and time reference position UN-
KNOWN, unless either or both of these are explicitly specified to be different
(Rots, 2007).

Note that the format used here is very close to the standard ISO8601
timestamp format except with respect to timezone handling. ISO8601 re-
quires a Z character at the end of the string when the timezone is UTC; here,
we follow the FITS (Hanisch et al., 2001) convention by omitting the Z but
still defaulting to UTC.

Timestamp values serialised on VOTable or in service parameters must
have the following metadata in the FIELD element: datatype="char",
arraysize="*", xtype="timestamp"; the arraysize may be set to a more
specific value if it is known (e.g. arraysize="10" for dates only).

3.3.4 Intervals

Numeric intervals are pairs of numeric values (integer and floating-pont).
For floating point intervals, special values for positive and negative infinity
may be used to specify open-ended intervals. Finite bounding values are
included in the interval. Open-ended floating-point intervals have one or
both bounding values that are infinite. Intervals with two identical values
are equivalent to a scalar value but must still be serialised as a pair of values.

The representation of an interval follows the array serialisation from
VOTable. For example:

0.5 1.0
-Inf 0.0
0.0 Inf
-Inf Inf
1.0 1.0

are all legal floating-point interval values and:

0 2
-5 5
0 0

17

are all legal integer interval values.
Floating point interval values serialised in VOTable or service parameters

must have the following metadata in the FIELD element: datatype="double"
or datatype="float", arraysize="2", xtype="interval".

Integer interval values serialised in VOTable or service parameters must
have the following metadata in the FIELD element: datatype="short" or
datatype="int" or datatype="long", arraysize="2", xtype="interval".

3.3.5 Point

Geometry values are two-dimensional; although they are usually longitude
and latitude values in spherical coordinates this is specified in the coordinate
metadata and not in the values.

Point values serialised in VOTable or service parameters must have
the following metadata in the FIELD element: datatype="double" or
datatype="float", arraysize="2", xtype="point". For points in a spher-
ical coordinate system, the values are ordered as: longitude latitude. For
example:

12.3 45.6

3.3.6 Circle

Circle values serialised in VOTable or service parameters must have the fol-
lowing metadata in the FIELD element: datatype="double" or datatype="float",
arraysize="3", xtype="circle". For circles in a spherical coordinate sys-
tem, the values are ordered as: longitude latitude radius; longitude values
must fall within [0,360], latitude values within [-90,90], and radius values in
(0, 90]. For example:

12.3 45.6 0.5

3.3.7 Polygon

Polygon values serialised in VOTable or service parameters must have
the following metadata in the FIELD element: datatype="double" or
datatype="float", arraysize="*", xtype="polygon". The array holds a
sequence of vertices (points) (e.g. longitude latitude longitude latitude ...)
with an even number of values and at least three (3) points (six (6) numeric
values). For example:

10.0 10.0 10.2 10.0 10.2 10.2 10.0 10.2

18

In spherical coordinates, all longitude values must fall within [0,360] and
all latitude values within [-90,90].

Option 1: The vertices of a polygon must be specified in counter-Choose one of
these options
Choose one of
these options clockwise order.

Option 2: The vertices of a polygon may be specified in clockwise or
counter-clockwise order. The inside is the region with the smallest area;
polygons in spherical coordinates are limited to less than half the sphere.

3.3.8 More geometry?

Ellipse? Coord-range? STC Box?Do we want any
of this?
Do we want any
of this?

3.4 Standard Parameters

3.4.1 REQUEST

The REQUEST parameter is intended for service capabilities that have mul-
tiple modes or operations, including non-standard (site-specific) optional
features. Most standard service capabilities will not define values for this
parameter.

If defined for a specific service capability, the REQUEST parameter is
always single-valued.

3.4.2 VERSION

The VERSION parameter has been removed because the different meaning
of request parameters it is intended to disambiguate are not allowed within
minor revisions of a standard; there are no useful scenarios where VERSION
would work.

3.4.3 RESPONSEFORMAT

The RESPONSEFORMAT parameter is used so the client can specify the
format of the response (e.g. the output of the job). For DALI-sync requests,
this is the content-type of the response. For DALI-async requests, this is
the content-type of the result resource(s) the client can retrieve from the
UWS result list resource; if a DALI-async job creates multiple results, the
RESPONSEFORMAT should control the primary result type, but details
can be specific to individual service specifications. While the list of supported
values are specific to a concrete service specification, the general usage is to

19

support values that are MIME media types (Freed and Borenstein, 1996) for
known formats as well as shortcut symbolic values.

table type media type short form

VOTable application/x-votable+xml votable
VOTable text/xml votable
comma-separated values text/csv csv
tab separated values text/tab-separated-values tsv
FITS file application/fits fits
pretty-printed text text/plain text
pretty-printed Web page text/html html

In some cases, the specification for a specific format may be parame-
terised (e.g., the media type may include optional semi-colon and additional
key-value parameters). A DAL service must accept a RESPONSEFORMAT
parameter indicating a format that the service supports and should fail (Sec-
tion 4.2) where the RESPONSEFORMAT parameter specifies a format not
supported by the service implementation.

A concrete DAL service specification will specify any mandatory or op-
tional formats as well as new formats not listed above; it may also place
limitations on the structure for formats that are flexible. For example, a
resource that responds with tabular output may impose a limitation that
FITS files only contain FITS tables, possibly only of specific types (ascii or
binary).

If a client requests a format by specifying the media type (as opposed
to one of the short forms), the response that delivers that content must set
that media type in the Content-Type header. This is only an issue when
a format has multiple acceptable media types (e.g., VOTable). This allows
the client to control the Content-Type so that it can reliably cause specific
applications to handle the response (e.g., a browser rendering a VOTable gen-
erally requires the text/xml media type). If the client requests a plain media
type (e.g., not parameterised) and the media type does allow optional pa-
rameters, the service may respond with a parameterised media type to more
clearly describe the output. For example, the text/csv media type allows two
optional parameters: charset and header. If the request includes RESPON-
SEFORMAT=text/csv the response could have Content-Type text/csv or
text/csv;header=absent at the discretion of the service. If the request spec-
ifies specific values for parameters, the response must be equivalent.

Individual DAL services (not just specifications) are free to support cus-

20

tom formats by accepting non-standard values for the RESPONSEFORMAT
parameter.

The RESPONSEFORMAT parameter should not be confused with the
FORMAT parameter used in many DAL services. The latter is generally used
as a query parameter to search for data in the specified format; FORMAT
and RESPONSEFORMAT have the same sense in TAP-1.0, but this is not
generally the case.

The RESPONSEFORMAT parameter is always single-valued.

3.4.4 MAXREC

For resources performing discovery (querying for an arbitrary number of
records), the resource must accept a MAXREC parameter specifying the
maximum number of records to be returned. If MAXREC is not specified
in a request, the service may apply a default value or may set no limit. The
service may also enforce a limit on the value of MAXREC that is smaller
than the value in the request. If the size of the result exceeds the resulting
limit, the service must only return the requested number of rows. If the
result set is truncated in this fashion, it must include an overflow indicator
as specified in Section 4.4.1 .

The service must support the special value of MAXREC=0. This value
indicates that, in the event of an otherwise valid request, a valid response be
returned containing metadata, no results, and an overflow indicator (Section
4.4.1). The service is not required to execute the request and the overflow
indicator does not necessarily mean that there is at least one record satisfying
the query. The service may perform validation and may try to execute the
request, in which case a MAXREC=0 request can fail.

The MAXREC parameter is always single-valued.

3.4.5 UPLOAD

The UPLOAD parameter is used to reference read-only external resources
(typically files) via their URI, to be uploaded for use as input resources to
the query. The value of the UPLOAD parameter is a resource name-URI
pair. For example:

UPLOAD=table1,http://example.com/t1

would define an input named table1 at the given URI. Resource names
must be simple strings made up of alphabetic, numeric, and the underscore
characters only and must start with an alphabetic character.

21

Services that implement UPLOAD must support http as a URI scheme
(e.g., must support treating an http URI as a URL). A VOSpace URI
(vos:<something>) is a more generic example of a URI that requires more
service-side functionality; support for the vos scheme is optional.

To upload a resource inline, the caller specifies the UPLOAD parameter
(as above) using a special URI scheme param. This scheme indicates that
the value after the colon will be the name of the inline content. The content
type used is multipart/form-data, using a file type input element. The name
attribute must match that used in the UPLOAD parameter.

For example, in the POST data we would have this parameter:

UPLOAD=table3,param:t3

and this content:

Content-Type: multipart/form-data; boundary=AaB03
[...]
--AaB03x
Content-disposition: form-data; name="t3"; filename="t3.xml"
Content-type: application/x-votable+xml
[...]
--AaB03x
[...]

If inline upload is used by a client, the client must POST both the UP-
LOAD parameter and the associated inline content in the same request. Ser-
vices that implement upload of resources must support the param scheme
for inline uploads.

In principle, any number of resources can be uploaded using the UP-
LOAD parameter and any combination of URI schemes supported by the
service as long as they are assigned unique names in the request. For exam-
ple:

UPLOAD=table1,http://example.com/t1.xml
UPLOAD=image1,vos://example.authority!tempSpace/foo.fits
UPLOAD=table3,param:t3

Services may limit the size and number of uploaded resources; if the ser-
vice refuses to accept the upload, it must respond with an error as described
in Section 4.2. Specific service specifications specify how uploaded resources
are referenced in other request parameters (for example, in a query), and
interpreted.

22

3.4.6 RUNID

The service should implement the RUNID parameter, used to tag service
requests with the identifier of a larger job of which the request may be part.
The RUNID value is a string with a maximum length of 64 characters.

For example, if a cross match portal issues multiple requests to remote
services to carry out a cross-match operation, all would receive the same
RUNID, and the service logs could later be analysed to reconstruct the ser-
vice operations initiated in response to the job. The service should ensure
that RUNID is preserved in any service logs and should pass on the RUNID
value in calls to other services made while processing the request.

The RUNID parameter is always single-valued.

4 Responses

All DAL service requests eventually result in one of three kinds of responses:
successful HTTP status code (200) and a service- and resource-specific repre-
sentation of the results, an HTTP status code and a standard error document
(see below) or a service- and resource-specific error document, or a redirect
HTTP status code (302 or 303) with a URL in the HTTP Location header.

4.1 Successful Requests

Successfully executed requests must eventually (after zero or more redirects)
result in a response with HTTP status code 200 (OK) and a response in the
format requested by the client (Section 3.4.3) or in the default format for
the service. The service should set HTTP headers ((Fielding et al., 1999))
that are useful to the correct values where possible. Recommended headers
to set when possible:

Content-Type
Content-Encoding
Content-Length
Last-Modified

For jobs executed using a DALI-async resource, the result(s) must be
made available as child resources of the result list and directly accessible
there. For jobs that inherently create a fixed result, service specifications
may specify the name of the result explicitly. For example, TAP-1.0 has a
single result and it must be named result, e.g.:

GET http://example.com/base/joblist/123/results/result

23

For concrete DAL service specifications where multiple result files may
be produced, the specification may dictate the names or it may leave it up
to implementations to choose suitable names.

4.2 Errors

If the service detects an exceptional condition, it must return an error doc-
ument with an appropriate HTTP-status code. DAL services distinguish
three classes of errors:

• Errors in communicating with the DAL service

• Errors in the use of the specific DAL protocol, including an invalid
request

• Errors caused by a failure of the service to complete a valid request

Error documents for communication errors, including those caused by ac-
cessing non-existent resources, authentication or authorization failures, ser-
vices being off-line or broken are not specified here since responses to these
errors may be generated by other off-the-shelf software and cannot be con-
trolled by service implementations. There are several cases where a DAL
service could return such an error. First, a DALI-async resource must re-
turn a 404 (not found) error if the client accesses a job within the UWS
job list that does not exist, or accesses a child resource of the job that does
not exist (e.g., the error resource of a job that has not run and failed, or
a specific result resource in the result list that does not exist). Second, ac-
cess to a resource could result in an HTTP 401 (not authorized) response
if authentication is required or an HTTP 403 (forbidden) error if the client
is not allowed to access the requested resource. Although UWS is currently
specified for HTTP transport only, if it were to be extended for use via other
transport protocols, the normal mechanisms of those protocols should be
used.

An error document describing errors in use of the DAL service protocol
may be a VOTable document (Ochsenbein et al., 2013) or a plain text doc-
ument. The content of VOTable error documents is described in Section 4.4
below. Service specifications will enumerate specific text to be included. For
plain text error documents the required text would be included at the start
of the document; for VOTable error documents, the required (and optional)
text would be included as content of the INFO element described in Section
4.4.2 . In either case, DAL services will allow service implementers to add

24

additional explanatory text after the required text (on the same line or on
subsequent lines). In all cases, these are errors that occur when the job is
executed and do not override any error behaviour for a UWS resource which
specifies the behaviour and errors associated with interacting with the job
itself.

If the invalid job is being executed using a DALI-async resource, the
error document must be accessible from the <DALI-async>/<jobid>/error
resource (specified by UWS) and when accessed via that resource it must be
returned with an HTTP status code 200, e.g.:

GET http://example.com/base/joblist/123/error

For DALI-async errors, services should recommend and may mandate
that required text be included in the error summary field of the UWS job in
addition to the error document; this permits generic UWS clients to consume
the standard part of the error description.

If the error document is being returned directly after a DALI-sync re-
quest, the service should use a suitable error code to describe the failure and
include the error document in the body of the response. The Content-Type
header will tell the client the format of the error document that is included
in the body of the response. In general, HTTP status codes from 400-499
signify a problem with the client request and status codes greater than or
equal to 500 signify that the request is (probably) valid but the server has
failed to function. For transport protocols other than HTTP, the normal
error reporting mechanisms of those protocols should be used.

4.3 Redirection

A concrete DAL service specification may require that HTTP redirects (302
or 303) be used to communicate the location of an alternate resource which
should be accessed by the client via the HTTP GET method. For example,
the UWS pattern used for DALI-async (Section 2.1) requires this behaviour.
Even when not required, concrete DAL service specifications must allow
implementers to use redirects and clients must be prepared to follow these
redirects using normal HTTP semantics (Fielding et al., 1999).

4.4 Use of VOTable

VOTable is a general format. In DAL services we require that it be used in a
particular way. The result VOTable document must comply with VOTable
v1.2 (Ochsenbein et al., 2013) or later versions.

25

The VOTable format permits table creators to add additional metadata
to describe the values in the table. Once a standard for including such
metadata is available, service implementers should use such mechanisms to
augment the results with additional metadata. Concrete DAL service speci-
fications may require additional metadata of this form.

The VOTable must contain one RESOURCE element identified with the
attribute type="results"; this resource contains the primary result (e.g.,
the only result for simple DAL services). Concrete DAL service specifications
define what goes into the primary result. The primary RESOURCE element
must contain, before the TABLE element, an INFO element with attribute
name valued QUERY_STATUS. The value attribute must contain one of the
following values:

QUERY_STATUS Interpretation

OK the job executed successfully and the result is
included in the resource

ERROR an error was detected at the level of the protocol,
the job failed to execute, or an error occurred
while writing the table data

OVERFLOW the job executed successfully, the result is in-
cluded in the resource, and the result was trun-
cated at MAXREC rows

The content of the INFO element conveying the status should be a message
suitable for display to the user describing the status.

<INFO name="QUERY_STATUS" value="OK"/>

<INFO name="QUERY_STATUS" value="OK">Successful query</INFO>

<INFO name="QUERY_STATUS" value="ERROR">
value out of range in POS=45,91
</INFO>

Additional RESOURCE elements may be present, but the usage of any such
elements is not defined here. Concrete DAL service specifications may define
additional resources (and the type attribute to describe them) and service
implementers are also free to add their own.

26

4.4.1 Overflow

If an overflow occurs (result exceeds MAXREC), the service must include
an INFO element in the RESOURCE with name="QUERY_STATUS" and the
value="OVERFLOW". If the initial INFO element (above) specified the over-
flow, no further elements are needed, e.g.:
<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="OVERFLOW"/>
...
<TABLE>...</TABLE>
</RESOURCE>

If the initial INFO element specified a status of OK then the service must
append an INFO element for the overflow after the table, e.g.:
<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="OVERFLOW"/>
</RESOURCE>

In the above examples, the TABLE should have exactly MAXREC rows.

4.4.2 Errors

If an error occurs, the service must include an INFO element with name="QUERY_STATUS"
and the value="ERROR". If the initial info element (above) specified the er-
ror, no further elements are needed, e.g.:
<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="ERROR"/>
...
<TABLE>...</TABLE>
</RESOURCE>

If the initial INFO element specified a status of OK then the service must
append an INFO element for the error after the table, e.g.:
<RESOURCE type="results">
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="ERROR">
unexpected IO error while converting something
</INFO>
</RESOURCE>

27

The use of trailing INFO element allows a service to stream output and
still report overflows or errors to the client. The content of these trailing
INFO elements is optional and intended for users; client software should not
depend on it.

4.4.3 Additional Information

Additional INFO elements may be provided, e.g., to echo the input parameters
back to the client in the query response (a useful feature for debugging or to
self-document the query response), but clients should not depend on these.
For example:

<RESOURCE type="results">
...
<INFO name="standardID" value="ivo://ivoa.net/TAP"/>
<INFO name="standardVersion" value="1.0"/>
...
</RESOURCE>

The following names for INFO elements should be used if applicable, but
this list is not definitive.

Info Name Value Interpretation

standardID IVOA standardID for the service specification
citation Reference to a publication that can/should be

referenced if the result is used

For citations, the INFO element should also include a ucd attribute with
the value meta.bib (if the value is a free-text reference) or meta.bib.bibcode (if
the value is a bibcode). If other meta.bib UCDs are added to the vocabulary
in future, they may also be used to describe the value.

A Changes

A.1 WC-DALI-1.1-20160415

• Removed introductory language on including capability-propertied el-
ements in examples.

• Expanded section on intervals to allow use of all integer and floating
point datatypes supported by VOTable; only floating point intervals
support open-ended intervals.

28

• Expanded section on geomery to allow use of datatype="float" in ad-
dition to double.

• Removed restrictions on the resource name for VOSI-availability re-
source.

• Fixed the timestamp format specification to correctly specify optional
parts.

• Added reference to RFC2616 and minimised discussion of HTTP head-
ers.

A.2 WD-DALI-1.1-20151027

Removed the requirement that the REQUEST must be a standard parame-
ter. It is now recommended if a service capability supports more than one
mode or operation. Removed VERSION parameter following experiences
with TAP-1.1 prototypes.

Re-organised the section on literal values and clarified that these rules are
intended to make input (parameters and other input docs) and output (re-
sponse documnets like VOTable) of services consistent. Added specification
of interval, point, circle, and polygon literal values and specified VOTable
xtype values for serialising such values in VOTable. Added VOTable serial-
isation and xtype for timestamp values. (Needed by SIA-2.0 and TAP-1.1)

Added bibtex cross-references.

A.3 PR-DALI-1.0-20130919

The following changes are in response to additional RFC commands and
during the TCG review.

New architecture diagram and minor editorial changes to improve docu-
ment.

Clarified RESPONSEFORMAT text to allow services to append mime-
type parameters if the client did not specify them.

Relaxed the VERSION parameter so services should default to latest
(instead of must) and to not differentiate between REC and pre-REC status.

Clarified the requirement for a VOTable RESOURCE with type="results"
attribute so it is clear that this is the primary result and other RESOURCES
may be present.

29

Clarified that HTTP-specific rules apply to RESTful web services and
that although we describe such services here we do not preclude future use
of other transport protocols.

A.4 PR-DALI-1.0-20130521

The following changes are in response to comments from the RFC period.
Made editorial changes from the DALI wiki page that were missed during

WG review.
Changed all cross-references to be readable text.
Replaced example curl output from a POST with explanatory text.
POST of job parameters directly to job: restricted to creation and /pa-

rameters resource
Changed number of DALI-async and DALI-sync resources to zero or

more.
Clarified that job parameters are the same if the type of job is the same,

but services can have different types of jobs (and hence different parameters)
on different job-list resources.

Fixed text forbidding any other vocab attributes in DALI-examples doc-
ument.

Replace http-action and base-url with something or add sync vs async:
replaced with capability property

Preventing loops with continuation in examples: removed.
Clarified that VOSI-capabilities does not require a registry extension

schema and use of xsi:type.
Explicitly require that if VOSI-tables is not implemented, the service

responds with a 404.
Clarified the purpose of requiring the service to use client-specified RE-

SPONSEFORMAT as the Content-Type of the response.
Attempted to clarify the acceptable use of status codes for errors.
Removed single-table restriction from votable usage.
Clarified interpretation of dates and times as UTC timescale by default

but permitting specific metadata to be specified.
Removed formatting of example links so they are not real hyperlinks in

output documents.
Clarified that services can enforce a smaller limit than a requested

MAXREC.

30

Removed text refering to IVOA notes on STC and Photometric metadata;
added more general text that services should include additional metadata
once standards for such are in place.

Explain the table at start of section 2.
Clarify requests that effect UWS job phase in DALI-async.
Removed malformed http post example from DALI-async section.
Remove reference to SGML specifically, but mention HTML5 as a poor

choice for DALI-examples.
Add reference to RFC2616 in the RESPONSEFORMAT section since it

talks about mimetypes.
Clarified text about setting job parameters and banned posting parame-

ters directly to the job URL.
Replaced the base-url and http-action properties with a single capability

property in DAL-examples. Changed the vocab identifier to be the IVOID for
DALI with fragment indicating the DALI-examples section of the document.

A.5 WD-DALI-1.0-20130212

Simplified DALI-examples to conform to RDFa-1.1 Lite in usage of at-
tributes.

References

Arviset, C., Gaudet, S. and the IVOA Technical Coordination Group (2010),
‘IVOA architecture’, IVOA Note.
URL: http://www.ivoa.net/documents/Notes/IVOAArchitecture

Biron, P. and Malhotra, A. (2004), ‘XML schema part 2: Datatypes second
edition’, W3C Recommendation.
URL: http://www.w3.org/TR/xmlschema-2/

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table access protocol version
1.0’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/TAP

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.
and Berners-Lee, T. (1999), ‘Hypertext transfer protocol – HTTP/1.1’,
rfc2616.
URL: http://www.w3.org/Protocols/rfc2616/rfc2616.html

31

Fielding, R. T. (2000), Architectural Styles and the Design of Network-based
Software Architectures, PhD thesis, University of California, Irvine.
URL: http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

Freed, N. and Borenstein, N. (1996), ‘Mulitpurpose internet mail extensions’,
IETF RFC.
URL: http://www.ietf.org/rfc/rfc2046.txt

Grid and Web Services Working Group (2011), ‘IVOA support interfaces
version 1.0’.
URL: http://www.ivoa.net/documents/VOSI/index.html

Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M.,
Teuben, P. J., Thompson, R. W. and Warnock, III, A. (2001), ‘Definition
of the Flexible Image Transport System (FITS)’.

Harrison, P. and Rixon, G. (2010), ‘Universal worker service pattern, version
1.0’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/UWS

Ochsenbein, F., Williams, R., Davenhall, C., Demleitner, M., Durand, D.,
Fernique, P., Giaretta, D., Hanisch, R., McGlynn, T., Szalay, A., Taylor,
M. and Wicenec, A. (2013), ‘Votable format definition, version 1.3’, IVOA
Recommendation.
URL: http://www.ivoa.net/documents/VOTable/

Plante, R., Stébé, A., Benson, K., Dowler, P., Graham, M., Greene, G., Har-
rison, P., Lemson, G., Linde, T. and Rixon, G. (2010), ‘VODataService: a
VOResource schema extension for describing collections and services ver-
sion 1.1’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/VODataService/

Rots, A. (2007), ‘Space-time coordinate metadata for the virtual observa-
tory’, IVOA Recommendation.
URL: http://www.ivoa.net/documents/latest/STC.html

Sporny, M. (2012), ‘Rdfa lite 1.1’, W3C Recommendation.

32

	Introduction
	Role within the VO Architecture
	Example Usage of the DALI Specification

	Resources
	Asynchronous Execution: DALI-async
	Synchronous Execution: DALI-sync
	DALI-examples
	name property
	capability property
	generic-parameter property
	continuation property

	Availability: VOSI-availability
	Capabilities: VOSI-capabilities
	Tables: VOSI-tables

	Parameters
	Case Sensitivity
	Multiple Values
	Literal Values
	Numbers
	Boolean
	Timestamp
	Intervals
	Point
	Circle
	Polygon
	More geometry?

	Standard Parameters
	REQUEST
	VERSION
	RESPONSEFORMAT
	MAXREC
	UPLOAD
	RUNID

	Responses
	Successful Requests
	Errors
	Redirection
	Use of VOTable
	Overflow
	Errors
	Additional Information

	Changes
	WC-DALI-1.1-20160415
	WD-DALI-1.1-20151027
	PR-DALI-1.0-20130919
	PR-DALI-1.0-20130521
	WD-DALI-1.0-20130212

