
AccessData

 International

 Virtual

 Observatory

Alliance

IVOA AccessData

Version 1.0
IVOA Working Draft 2014-07-30

Interest/Working Group:

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDAL

This version:

WD-AccessData-1.0-20140730

Latest version:

Not yet issued

Previous version(s):

WD-AccessData-1.0-20140312

Editors:

TBD

Authors:

TBD

- 1 -

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDAL

AccessData

Abstract
This document describes the AccessData web service capability. AccessData is a
low-level data access capability that can act upon the data files, performing
various kinds of operations: filtering/subsection, transformations, pixel operations,
and applying functions to the data.

- 2 -

AccessData

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgments
The authors would like to thank all the participants in DAL-WG discussions for
their ideas, critical reviews, and contributions to this document.

Contents
 1 Introduction...5

 1.1 The Role in the IVOA Architecture...5

 1.2 Motivating Use Cases..5

 1.2.1 Retrieve Subsection of a Datacube...6

 1.2.2 Retrieve subsection of a 2D Image...6

 1.2.3 Retrieve subsection of a Spectrum...6

 1.2.4 Flatten a Datacube into a 2D Image..6

 1.2.5 Flatten a Datacube into a 1D Spectrum..6

 1.2.6 Rebin Data by a Fixed Factor..6

 1.2.7 Reproject Data onto a Specified Grid..6

 1.2.8 Compute Aggregate Functions over the Data.......................................7

 1.2.9 Apply Standard Function to Data Values...7

 1.2.10 Apply Arbitrary User-Specified Function to Data Values.....................7

 1.2.11 Run Arbitrary User-Supplied Code on the Data..................................7

 2 Resources...8

 2.1 {sync} resource...8

 2.2 {async} resource...9

 2.3 Examples: DALI-examples...9

 2.4 Availability: VOSI-availability..9

 2.5 Capabilities: VOSI-capabilities...9

- 3 -

http://www.ivoa.net/Documents/

AccessData

 3 Parameters for {sync} and {async}...12

 3.1 Common Parameters...12

 3.1.1 REQUEST...12

 3.1.2 ID...12

 3.2 Filtering Parameters...12

 3.2.1 POS...12

 3.2.2 BAND...14

 3.2.3 TIME..15

 3.2.4 POL..16

 3.2.5 COORD...16

 3.2.6 SELECT...17

 3.3 Transformation Parameters..18

 4 {sync} Responses...19

 4.1 Successful Requests..19

 4.2 Errors..19

 5 {async} Responses...20

 6 Changes..21

 6.1 WD-AccessData-1.0-20140312...21

 7 References..22

- 4 -

AccessData

 1 Introduction
The AccessData web service interface defines a RESTful web service for
performing server-side operations on data before transfer.

 1.1 The Role in the IVOA Architecture

TODO: new diagram from TCG

AccessData services conform to the Data Access layer Interface (DALI [1])
specification, including the Virtual Observatory Support Interfaces (VOSI [2])
resources.

 1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the AccessData specification. While this is not complete, it helps
to understand the problem area covered by this specification.

- 5 -

AccessData

 1.2.1 Retrieve Subsection of a Datacube

Cutout a subsection using coordinate axis values. The input to the cutout
operation will include one or more of the following:

• a region on the sky

• an energy value or range

• a time value or range

• one or more polarization states

The region on the sky should be something simple: a circle, a range of
coordinate values, or maybe a polygon.

 1.2.2 Retrieve subsection of a 2D Image

This is a special case of 1.2.1 where the cutout is only in the spatial axes.

 1.2.3 Retrieve subsection of a Spectrum

This is a special case of 1.2.1 where the cutout is only in the spectral axis.

 1.2.4 Flatten a Datacube into a 2D Image

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

 1.2.5 Flatten a Datacube into a 1D Spectrum

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

 1.2.6 Rebin Data by a Fixed Factor

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

 1.2.7 Reproject Data onto a Specified Grid

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

- 6 -

AccessData

 1.2.8 Compute Aggregate Functions over the Data

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

 1.2.9 Apply Standard Function to Data Values

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

 1.2.10 Apply Arbitrary User-Specified Function to Data Values

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

 1.2.11 Run Arbitrary User-Supplied Code on the Data

This use case will be developed and supported in the AccessData-1.1 (or later)
specification.

- 7 -

AccessData

 2 Resources

AccessData services are implemented as HTTP REST [18] web services with a
{sync} resource that conforms to the DALI-sync resource description.

resource type resource name required

{sync} service specific

{async} service-specific

DALI-examples /examples no

VOSI-availability /availability yes

VOSI-capabilities /capabilities yes

A stand-alone AccessData service may have one or both of the {sync} and
{async} resources. For either type, it could have multiple resources (e.g. to
support alternate authentication schemes). The AccessData service may also
include other custom or supporting resources.

Either the {sync} or {async} AccessData capability may be included as part of
other web services. For example, a single web service could contain the SIA-2.0
{query} capability, the DataLink-1.0 {links} capability, and the AccessData {sync}
capability. Such a service must also have the VOSI-availability and VOSI-
capabilities resources to report on and describe all the implemented capabilities.

 2.1 {sync} resource

The {sync} resource is a synchronous web service resource that conforms to the
DALI-sync description. The implementer is free to name (set the path) for this
resource however they like; the client will find the resource path using the VOSI-
capabilities resource.

The {sync} resource performs the data access as specified by the input
parameters and returns the data directly in the output stream. Synchronous data
access is suitable when the operations can be quickly performed and the data
stream can be setup and written to (by the service) in a short period of time (e.g.
before any timeouts).

- 8 -

AccessData

 2.2 {async} resource

The {async} resource is an asynchronous web service resource that conforms to
the DALI-async description. The implementer is free to name (set the path) for
this resource however they like; the client will find the resource path using the
VOSI-capabilities resource.

The {async} resource performs the data access as specified by the input
parameters and either (i) stores the results for later transfer or (ii) pushes the
results to a specified destination (e.g. to a VOSpace location). Asynchronous
data access usually introduces resource constraints on the service (which may
be limited) and usually imposes a higher latency before any results can be seen
because the location of results does not have to be valid until the data access job
is complete. Asynchronous data access is intended for (but not limited to) use
when the operations take considerable time and results must be staged (e.g.
some multi-pass algorithms or operations that result in multiple outputs).

 2.3 Examples: DALI-examples

AccessData services should provide a DALI-examples resource with one
example invocation that shows the variety operations the service can perform.
Example operations using the {sync} resource and that output a small data
stream are preferred.

 2.4 Availability: VOSI-availability

An AccessData web service must have a VOSI-availability resource [2] as
described in DALI [1].

 2.5 Capabilities: VOSI-capabilities

A web service that includes AccessData capabilities must have a VOSI-
capabilities resource [2] as described in DALI [1]. The standardID for the {sync}
resource is

ivo://ivoa.net/std/AccessData#sync

The standardID for the {async} resource is

ivo://ivoa.net/std/AccessData#async

All DAL services must implement the /capabilities resource. The following
capabilities document shows the minimal metadata for a stand-alone AccessData
service and does not require a registry extension schema:

<?xml version="1.0" encoding="UTF-8"?>

- 9 -

AccessData

<vosi:capabilities

 xmlns:vosi="http://www.ivoa.net/xml/VOSICapabilities/v1.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:vod="http://www.ivoa.net/xml/VODataService/v1.1">

 <capability standardID="ivo://ivoa.net/std/VOSI#capabilities">

 <interface xsi:type="vod:ParamHTTP" version="1.0">

 <accessURL use="full">

 http://example.com/data/capabilities

 </accessURL>

 </interface>

 </capability>

 <capability standardID="ivo://ivoa.net/std/VOSI#availability">

 <interface xsi:type="vod:ParamHTTP" version="1.0">

 <accessURL use="full">

 http://example.com/data/availability

 </accessURL>

 </interface>

 </capability>

 <capability standardID="ivo://ivoa.net/std/AccessData#sync">

 <interface xsi:type="vod:ParamHTTP" role="std" version="1.0">

 <accessURL use="full">

 http://example.com/data/sync

 </accessURL>

 </interface>

 <!-- service details from extension schema could go here -->

 </capability>

 <capability standardID="ivo://ivoa.net/std/AccessData#async">

 <interface xsi:type="vod:ParamHTTP" role="std" version="1.0">

 <accessURL use="full">

 http://example.com/data/async

 </accessURL>

 </interface>

 <!-- service details from extension schema could go here -->

 </capability>

</vosi:capabilities>

Note that the {sync} and {async} resources do not have to be named as shown in
the accessURL(s) above. Multiple capability elements for the {sync} and the
{async} resources may be included; this is typically used if the differ in protocol

- 10 -

AccessData

(http vs. https) and/or authentication requirements.

- 11 -

AccessData

 3 Parameters for {sync} and {async}

The {sync} and {async} resources accept the same set of parameters.

 3.1 Parameter description

The input parameters defined in this section are fully described. However these
parameters should also be described each time the service is invocated. The
DataLink specification (Dowler et al, 2015) defines a general mechanism for a
“service descriptor” which is plainly relevant to describe an AccessData service in
the response of a data discovery service. Any occurrence of the service
descriptor for an AccessData service SHOULD contain the description of these
parameters. Each input parameter is described by a PARAM element with a
MANDATORY occurrence of the 3 following attributes: datatype, ucd, unit. The
xtype attribute is usefull and recommended for several parameters. Datatype is
one of the basic VOTABLE types. For string syntax parameters it will be char.
UCD will identify the astronomical quantity queried via this parameter. The unit is
relative to the values of the PARAMETER. In the case of string-syntax
parameters of datatype char, there is generally no unit. The xtype value is
chosen in a set of complex types defined by a BNF syntax and described in the
Appendix.---> Do we keep that ?

Custom parameters of the service, if any, MUST be described in the same way.

 3.2 Common Parameters

 3.2.1 ID

The ID parameter is used to specify the dataset or file to be accessed. The
values for the ID parameter are generally discovered from data discovery or
DataLink requests. The values must be treated as opaque identifiers that are
used as-is. The DataLink specification [8] describes mechanisms for conveying
opaque parameters and values in service descriptor resources that can be used
by clients to set the ID parameter.

The ID parameter is single-valued in {sync} requests, so {sync} access data
requests access a single dataset or file. Multiple ID parameters may be submitted
in {async} requests on order to bundle access to multiple datasets or files in a
single job.

- 12 -

AccessData

The ID parameter datatype is “char”, its ucd is “”, its xtype is “ivoident” and its unit
is blank.

 3.3 Filtering Parameters

Filtering parameters are used to extract subsets of larger datasets or data files.
In general, filtering parameters are single-valued in {sync} requests and multi-
valued in {async} requests (exceptions noted below). When multiple values of
filtering parameters are used in an {async} job, each combination of values
produces zero or one result. For example, if an {async} job included two POS
and two BAND values, there could be as many as four results (or fewer if some
combinations do not produce a result because the filter does not intersect the
bounds of the data).

 3.3.1 POS

The POS parameter defines the positional region(s) to be extracted from the
data. The value is made up of a shape keyword followed by coordinate values;
the coordinate values must be specified in the coordinate system and units of the
data. (isn't that in meters and ICRS as in SIAV2 ?)The allowed shapes are:

Shape Coordinate values

CIRCLE <longitude> <latitude> <radius>

RANGE <longitude1> <longitude2> <latitude1> <latitude2>

POLYGON <longitude1> <latitude1> ... (at least 3 pairs)

Table 1: POS Values in Spherical Coordinates

Unlimited value is coded by NaN.

A circle at (12,34) with radius 0.5:

POS=CIRCLE 12 34 0.5

A range of [12,14] in longitude and [34,36] in latitude:

POS=RANGE 12 14 34 36

A polygon from (12,34) to (14,34) to (14,36) to (12,36) and (implicitly) back to
(12,34):

POS=POLYGON 12 34 14 34 14 36 12 36

- 13 -

AccessData

The inside is always assumed to be the smaller of the region to the left and the
region to the right so only polygons smaller than half the sphere can be specified.

A band around the equator:

POS=RANGE 0 360 -2 2

The north pole:

POS=RANGE 0 360 89 NaN

This syntax is in the same style as STC-S, but with no reference positions,
coordinate systems, units, or geometric operators like union, intersection, not,
etc.

All longitude and latitude values (plus the radius of the CIRCLE) are expressed in
degrees in the ICRS. A future version of this specification may allow the use of
other reference systems (specifically the native system of the data).

TODO: put an explicit and suitable reference system and STC ref
here...consistent with the language in SIA-2.0 {query}.

The POS parameter is single-valued for {sync} requests and multi-valued for
{async} jobs.

The datatype of the POS parameter is “char”, the VOTABLE unit is “none” (but
the underlying unit is assumed to be "deg"), the ucd is “pos” and the xtype can
take one of the three values “circle”, “range” and “polygon”.

 3.3.2 BAND

The BAND parameter defines the energy interval(s) to be extracted from the
data. The value is an open or closed numeric interval of values in the native
spectral axis coordinate system and units of the data. The intervals always
include the bounding values.

If there is one single value the interval is assumed to be infinitely small (a scalar
value).

The closed interval [500,550]:

BAND=500 550

The open interval (-inf,300]

BAND=NaN 300

- 14 -

AccessData

The open interval [750,inf)

BAND=750 NaN

The scalar value 550, equivalent to [550,550]:

BAND=550

Extracting using a scalar value should normally extract a single pixel along the
energy axis of the data; extracting using an interval should extract one or more
pixels.

All energy values are expressed as barycentric wavelength in meters. A future
version of this specification may allow the use of other reference systems
(specifically the native system of ther data).

TODO: put an explicit and suitable reference system and STC ref
here... Arnold?

The BAND parameter is single-valued for {sync} requests and multi-valued for
{async} jobs.

The datatype of the BAND parameter is “double”, the ucd is “em”, the unit is “m”
and the xtype is “interval”.

 3.3.3 TIME

The TIME parameter defines the time interval(s) to be extracted from the data.
The value is an open or closed interval with either numeric values (interpreted as
Modified Julian Dates) or timestamp values as specified in DALI [1].

If there is one single value the numeric interval is assumed to be infinitely small
(a scalar value). and a timestamp value is assumed to be an interval

For timestamp strings with only the date portion present, the time portion is
interpreted to be 00:00:00 if the range separator is absent (scalar) or the value is
at the lower bound of the interval and 23:59:59.999 if the value is at the upper
bound of the interval.

An open interval from the beginning of 2012 and all later times:

TIME=2012-01-01/

All of 2012 (using the implied time portions above):

TIME=2012-01-01/2012-12-31

- 15 -

AccessData

The following time intervals are equivalent (using the implied time portions
above):

TIME=2012-01-01/2012-01-10

TIME=2012-01-01T00:00:00/2012-01-10T23:59:59.999

A range of MJD values:

TIME=55123.456/55123.466

An instant in time:

TIME=2012-01-02T12:34:56.789

An instant in time using Modified Julian Date:

TIME=55678.123456

The following scalar time instants are equivalent:

TIME=2012-01-02

TIME=2012-01-02T00:00:00

Time values are always UTC.

TODO: put an explicit and suitable reference system and STC ref
here... Arnold?

The TIME parameter is single-valued for {sync} requests and multi-valued for
{async} jobs.

The datatype of the TIME parameter is “double”, the ucd is “time” and the xtype
is “interval”. The unit is day.

 3.3.4 POL

The POL parameter defines the polarization state(s) (Stokes) to be extracted
from the data.

Extract the unpolarized intensity:

POL=I

Extract the standard circular polarization:

POL=V

- 16 -

AccessData

The POL parameter is multi-valued; multiple values can be included in a single
request and all will be extracted. Extract only the IQU components:

POL=I

POL=Q

POL=U

The POL is multi-valued for both {sync} and {async} jobs. Unlike general filtering
parameters, all values of POL are combined into a single filter; for example, if the
request includes the three values above, the job would generate one result with
some or all of these polarization states (per combination of ID and other filtering
parameters).

The datatype for the POL parameter is “char", the ucd is “pol”. the xtype is
“stokes”. The unit is blank.

 3.3.5 COORD

The COORD parameter is used to extract a range of values from an arbitrary
coordinate axis. The value is made up of an axis name and a numeric interval.
The axis names must be obtained from the detailed metadata for the dataset.
This coordinate axis can be an additional observation axis (such as redshift for
example) or an axis defined in a simulation for a result dataset.

Extract from 20 to 40 along the foo axis:

COORD=foo 20/40

Extract from 20 to 40 in foo, bar larger than 50, and two slices in baz:

COORD=foo 20/40

COORD=bar 50/

COORD=baz 1/2

COORD=baz 8/9

The COORD parameter as defined here is limited to ranges of scalar values. It is
intended for use with highly processed datasets that do not have normal physical
axes that can be interpreted using the POS, BAND, TIME, and POL parameters,
such as simulations (and it could be applied to tables or catalogues, although
those might be better served via TAP [6]).

Note: The scalar range parameters for observational data (BAND, TIME, POL)
could be expressed using the COORD parameter. For example, the following
could be equivalent:

BAND=500/550

- 17 -

AccessData

COORD=WAVE 500/550

The COORD PARAMETER has a “char“ datatype, the ucd is undefined as
well as the unit, the xtype is “coordrange”.

 3.3.6 SELECT

The SELECT parameter is used to select a subset of the observable values
(properties or attributes). Normally, observational data has a single value
(typically an intensity) at each sampled coordinate (pixel) and the SELECT
parameter is not used. However, for datasets produced from arbitrary
computations, including theoretical simulations, there can be many properties for
every sample (grid cell, particle for n-body, etc.); in this case the SELECT
parameter lets the client extract a subset of the properties.

The value for the SELECT parameter is the name of the property to be extracted.
The parameter is multi-valued, so extracting multiple properties requires the use
of multiple parameters.

Extract the luminosity:

SELECT=luminosity

Extract several properties:

SELECT=temperature

SELECT=density

SELECT=pressure

SELECT=Fe_H

SELECT=HeIII

The SELECT PARAMETER has “char” datatype, the ucd is “phys”,
the unit is blank and the xtype is “quantity”

 3.4 Transformation Parameters

Transformations will be defined in a future version of AccessData.

- 18 -

AccessData

 4 {sync} Responses

All responses from the {links} resource follow the rules for DALI-sync resources,
except that the {links} response allows for error messages for individual input
identifier values.

 4.1 Successful Requests

Successfully executed requests should result in a response with HTTP status
code 200 (OK) and a response in the format requested by the client or in the
default format for the service.

If the values specified for cutout parameters do not include any pixels from the
target dataset/file, the service must respond with HTTP status code 204 (No
Content) and no response body.

The service should set the following HTTP headers to the correct values where
possible.

Content-Type mime-type of the response

Content-Encoding encoding/compression of the response (if applicable)

Table 2: Recommended HTTP Response Headers

Since the response is usually dynamically generated, the Content-Length and
Last-Modified headers cannot usually be set.

 4.2 Errors

The error handling specified for DALI-sync resources applies to service failure.
Error documents should be text using the text/plain content-type and the text
must begin with one of the following strings:

Error General error (not covered below)

AuthenticationError Not authenticated

AuthorizationError Not authorized to access the resource

ServiceUnavailable Transient error (could succeed with
retry)

UsageError Permanent error (retry pointless)

- 19 -

AccessData

 5 {async} Responses

The {async} resource conforms to the DALI-async resource description, which
means the job is a UWS job with all the job control features available. All result
files are to be listed as children of the UWS results resource. The service
provider is free to name each result.

- 20 -

AccessData

 6 Changes

 6.1 WD-AccessData-1.0-201502

Added general introduction on PARAMETER description to section 3. Modified
SELECT and COORD sections in order to detach them from SimDal. Added
Appendix on xtype description with BNF syntax.

 6.2 WD-AccessData-1.0-20140730

Removed REQUEST parameter since the DAL-WG decision to not include it
when there is only one value.

Clarified that ID and filierting parameters are single valued for {sync} and multi-
valued for {async}, wth POL being multi-valued but still being treated as a single
filter.

 6.3 WD-AccessData-1.0-20140312

This is the initial document.

- 21 -

AccessData

 7 References
[1] P. Dowler, M. Demleitner, M. Taylor, D. Tody Data Access Layer Interface 1.0,

IVOA Recommendation 29 November 2013.
http://www.ivoa.net/std/DALI/

[2] M. Graham & G. Rixon (ed.), GWS-WG, IVOA Support Interfaces Version 1.0,
IVOA Recommendation, 31 May 2011.
http://www.ivoa.net/Documents/VOSI/

[3] Y. Shafranovich, Common Format and MIME Type for Comma-Separated
Values (CSV) Files, IETF RFC 4180.
http://www.ietf.org/rfc/rfc4180.txt

[4] IANA, MIME Media Types,
http://www.iana.org/assignments/media-types/text/tab-separated-values

[5] F. Ochsenbein, M. Taylor (ed.), R. Williams, C. Davenhall, M. Demleitner, D.
Durand, p. Fernique, D. Giaretta, R. Hanisch, T. McGlynn, A. Szalay, A.
Wicenec VOTable Format Definition Version 1.3, IVOA Recommendation 20
September 2-13.
http://www.ivoa.net/Documents/VOTable /

[6] P. Dowler, G. Rixon, D. Tody, DAL-WG, Table Access Protocol Version 1.0,
IVOA Recommendation 27 March 2010.
http://www.ivoa.net/Documents/TAP/1.0

[7] M. Louys, F. Bonnarel, D. Schade, P. Dowler, A. Micol, D. Durand, D. Tody, L.
Michel, J. Salgado, I. Chilingarian, B. Rino, J. De Dios Santander, P. Skoda,
Observation Data Model Core Components and its Implementation in the
Table Access Protocol Version 1.0, IVOA Recommendation 28 October 2011.
http://www.ivoa.net/Documents/ObsCore/

[8] P. Dowler, F. Bonnarel, L. Michel, T. Donaldson, D. Languignon, M.
Demleitner, DataLink Version 1.0, IVOA Working Draft 29 February 2014.
http://www.ivoa.net/Documents/DataLink/

Appendix : xtypes list and BNF definition

A.1 ivoident xtype

<ivoident> defined as in IVOA identifiers.

A.2 range xtype

The “range” xtype is used in the POS parameter context. BNF description of this
xtype is the following.

 <range> ::= RANGE <interval>

see <interval> BNF definition in the interval xtype section.

- 22 -

http://www.ivoa.net/Documents/DataLink/
http://www.ivoa.net/Documents/ObsCore/
http://www.ivoa.net/Documents/TAP/1.0
http://www.ivoa.net/Documents/VOTable/1.2
http://www.iana.org/assignments/media-types/text/tab-separated-values
http://www.ietf.org/rfc/rfc4180.txt
http://www.ivoa.net/Documents/VOSI/1.0
http://www.ivoa.net/std/DALI/

AccessData

A.3 circle xtype

The “circle” xtype is used in the POS parameter context. BNF description of this
xtype is the following.

<circle> ::= CIRCLE <interval>

See <interval> BNF definition in the interval xtype section.

A.4 polygon xtype

The “range” xtype is used in the POS parameter context. BNF description of this
xtype is the following.

<polygon> ::= POLYGON [<pos> …] where <pos> is a couple of doubles.

A.5 interval xtype

The interval xtype is used in the BAND parameter. It is also reused in other
xtypes such as <range> and <mjdrange>

<interval> ::= [<min>] “/ “ [<max>] where <min> and <max> are doubles

A.6 timerange xtype

The timerange xtype is used in the TIME parameter. It is the combination of two
different xtypes <mjdrange> and <timestamp>. <mjdrange> allows to define
intervals expressed in modified julain days. <timestamp> is based on ISO
8601.

<timerange> ::= <mjdrange> | <timestamp>

<mjdrange> ::= <interval>

<timestamp> is defined in DALI.

A.7 stokes xtype

The stokes xtype is used in the POL parameter.

<stokes> ::= I | Q | U | V

A.8 coordrange xtype

The coordrange xtype is used in the COORD parameter.

- 23 -

AccessData

<coordrange>::= <coord> <interval>

<coord> is a string.

A.9 quantity xtype.

The quantity xtype is used in the SELECT parameter.

<quantity> is a string.

- 24 -

	1 Introduction
	1.1 The Role in the IVOA Architecture
	1.2 Motivating Use Cases
	1.2.1 Retrieve Subsection of a Datacube
	1.2.2 Retrieve subsection of a 2D Image
	1.2.3 Retrieve subsection of a Spectrum
	1.2.4 Flatten a Datacube into a 2D Image
	1.2.5 Flatten a Datacube into a 1D Spectrum
	1.2.6 Rebin Data by a Fixed Factor
	1.2.7 Reproject Data onto a Specified Grid
	1.2.8 Compute Aggregate Functions over the Data
	1.2.9 Apply Standard Function to Data Values
	1.2.10 Apply Arbitrary User-Specified Function to Data Values
	1.2.11 Run Arbitrary User-Supplied Code on the Data

	2 Resources
	2.1 {sync} resource
	2.2 {async} resource
	2.3 Examples: DALI-examples
	2.4 Availability: VOSI-availability
	2.5 Capabilities: VOSI-capabilities

	3 Parameters for {sync} and {async}
	3.1 Parameter description
	3.2 Common Parameters
	3.2.1 ID

	3.3 Filtering Parameters
	3.3.1 POS
	3.3.2 BAND
	3.3.3 TIME
	3.3.4 POL
	3.3.5 COORD
	The COORD PARAMETER has a “char“ datatype, the ucd is undefined as well as the unit, the xtype is “coordrange”.
	3.3.6 SELECT

	The SELECT PARAMETER has “char” datatype, the ucd is “phys”, the unit is blank and the xtype is “quantity”
	3.4 Transformation Parameters

	4 {sync} Responses
	4.1 Successful Requests
	4.2 Errors

	5 {async} Responses
	6 Changes
	6.1 WD-AccessData-1.0-201502
	6.2 WD-AccessData-1.0-20140730
	6.3 WD-AccessData-1.0-20140312

	7 References

