EPN-TAP and **EPNcore** v2.0

S. Erard, B. Cecconi, P. Le Sidaner, M. Demleitner and the VESPA/Europlanet team

IVOA Virtual Interop. Nov 17-19 2020

EPN-TAP / Motivation

- Europlanet EU programme(s): consistent access to Solar System data (including derived data)?
 VO framework seemed appropriate. Scope = Planetary Science, Heliophysics, exoplanets
- Difficulties:
- Moving objects / targets, seldom clearly identified in existing archives
- Targets are resolved: many coordinate systems related to targets or configurations
- More diverse types of measurements:
 Not only light, but also particles, fields + lab samples
- TAP is adapted to searches in catalogues (one of the main expected usages)
- ObsCore provides similar concepts for general parameters
 Missing vocabulary to name observing and configuration parameters
 but this exists to some extent in PDS (space archives) and SPASE (plasma related)
- Missing UCDs for reflected light, in-situ and sample measurements

EPN-TAP = Usual TAP mechanism EPNCore vocabulary + associated UCDs Set of rules related to services and tables

EPN-TAP status

- First published in Astronomy and Computing (Erard et al 2014) v1.0
- Proto-version 2.0 presented by Baptiste Cecconi at Interop 2015, Sesto
- Mature v2.0 recently submitted as a Working Draft to DAL WG

This relies on publication of 55 data services worldwide (~ 20 teams) and is now mature

- All existing services are in v2.0, being reviewed and updated to latest version
- Validator in place at VOParis (PADC) (P. Le Sidaner, Interop 2015): TAP validation using TAPLINT, includes check on EPNcore keywords/ucd/units
- Preliminary EPN-TAP2 mixin in DaCHS (to be reviewed and completed)

Europlanet VESPA: Data services connected via EPN-TAP / field

Open
Open in test | upgrade required
Being drafted
Scheduled 2024 (selection)

- New or upgraded in 2020
- New content in 2020

Atmospheres

- Titan profiles CIRS (Cassini, LESIA)
- - Venus spectroscopy VIRTIS (VEx, LESIA)
 - Mars Climate Database (modeling, LMD)
- Venus profiles SPICAV/SOIR (VEx, IASB-BIRA)
 - Mars profiles SPICAM (MEx, LATMOS)
 - All MEx derived atmospheric products (via MEx IDS)
 - Venus cloud products (LATMOS)
 - ExoMars/NOMAD (BIRA-IASB)

Small bodies

- M4ast (ground based spectroscopy, IMCCE)
- 1P/Halley spectroscopy (IKS / Vega-1, LESIA)
- BaseCom (Nançay Obs, LESIA)
 - TNOs are cool (Herchel & Spitzer + compilation, LESIA & LAM & Utinam)
- SBNAF (from H2020 prog, Konkoly Obs)
 - Cometary lines catalogue (IAPS)
 - Vesta & Ceres spectroscopy VIR/DAWN (IAPS)
- - DynAstVO: NEO refined parameters (IMCCE)
- MPCorb: Small bodies orbital cat (MPC/Heidelberg)
 - Rosetta ground-based support
 - 67P illumination config (IRAP)
 - Meteor showers predictions (IMCCE)
 - Occultations predictions, ast & sat (IMCCE)
 - LuckyStar, occultations (ERC prog, LESIA)
 - Natural satellites db (IMCCE)

Solid spectroscopy

- - SSHADE ices & minerals spectro (IPAG & network)
 - Planetary Spectral Library (DLR)
 - PDS spectral library (LESIA)
 - Berlin Reflectance Spectral Lib (DLR)
 - Hoserlab (Winnipeg U)

Surfaces

- CRISM WCS service (MRO, Jacobs U)
- - Mars craters (Jacobs U, + update by GEOPS)
 - USGS planetary maps WMS (Jacobs U)
 - M3 WMS service (Chandrayaan-1, Jacobs U)
 - HRSC nadir images, WMS (MEx, Frei Univ)
 - OMEGA cubes and maps (MEx, IAS)
- VIMS satellites, w/geometry (Cassini, LPG)
- MarsSI GIS (Lyon)
- Global spectral param of Mercury (DLR)

Magnetospheres / radio

- - APIS (HST/Cassini, LESIA)
- - NDA (Jupiter radio Nançay, LESIA)
- AMDA (CDPP / IRAP)
- MAG data (VEx, IWF Graz)
- MASER & related services (LESIA)
 - RadioJove (LESIA & US amateur network)
- Iltate HF data of Jupiter (Tohoku Univ, Jap)
- UTR-2 Juno ground support (Kharkiv)
- MDISC & JASMIN (modeling, UCL)
- Cluster & Themis data (IAP, Prague)
- IMPEx models (from FP7 prog, IWF Graz)
- - Hisaki (Tohoku Univ., Jap)
- Transplanet (CDPP / IRAP)
- LOFAR Jupiter (CBK/PAS, Warsaw)
- Magnetic field simus (LMSU)
- ASPERA & MARSIS atm obs (MEx, Iowa U)

Solar

- HELIO AR & 1T3 solar features (from FP7 prog. LESIA)
- - Bass2000 (LESIA)
 - Radio Solar db (Nançay, LESIA)
- - CLIMSO (Pic du Midi, IRAP)
- IPRT/AMATERAS (Tohoku Univ, Jap)
- - Gaia-DEM (SDO, IAS)
- - e-Callisto (Windisch, Sw)

Generic / interdisciplinary

- BDIP (LESIA)
- - PVOL (UPV/EHU & amateur network)
 - Telescopic planetary spectra collection (LESIA)
- PSA complete archive (ESA)
- • HST planetary data (LESIA, to CADC archive)
 - Catalogues of planetary maps (Budapest)
- - VizieR catalogues in Planetary Science (CDS)
- Gas absorption cross-sections (Granada)
- Planets then satellites characteristics (LESIA/IMCCE)
- Nasa dust catalogue (IAPS)
- Stellar spectra, support for observations & exopl. (LESIA)
- DARTS (JAXA currently via PDAP)
- Herschel planetary data (ESA)
- Interface with VAMDC (TBD)

Exoplanets

- Encyclopedia of exoplanets (compilation, LUTH/LESIA)
 - Catalogue of exo disks (LESIA)
 - Interface with DACE (Geneva)
 - ARTECS climate simulations (AOTS/INAF)
- Atmospheric studies (UCL)
- surface simulations (GEOPS)

EPN-TAP rules

Tables

- One table / service (similar to ObsCore) called <service>.epn_core
- One product / row (= "granule") associated thumbnail is allowed and recommended
- Products can be sets of scalar in the table, or provided through a unique URL: either files or web services
- Related products, especially docs, can be associated with datalink

Parameters

- Most parameters appear as pair of min/max values and both must be provided in all cases (=> search intersections of coverages)
- Multivalued parameters are provided as #-separated lists
- Some parameter values must be taken from predefined lists

EPNCore design

- Mandatory parameters allow simultaneous search in all services on basic quantities (e.g. in VESPA portal)
 e.g.: target, time, location, spectral range, illumination, instrument, data type, IDs, references...
 measurement_type: identifies physical quantity through UCD
- Other, optional parameters belong to various categories:
 - common ones: file name & url, bib reference, filter, extra time scales...
 - sets of more specialized parameters are defined as topical extensions: maps, lab spectroscopy, particles...
 - extensions are only related to the definition process. These parameters are free to use whenever relevant
 - extra parameters can be defined / included in a service when nothing fits

Currently ~ 180 parameters in EPNCore

The main parameters are listed in the next slides, as an introduction to the vocabulary

EPNcore — Resource

(EPN-TAP parameter - optional in blue)

(equivalent in ObsCore)

· service title:

full name of resource / schema name

· creation/ modification/ release/ date: required for mirrors & proprietary periods

· obs creation date

• publisher:

Publisher from VOResource

- bib reference: publication related to granule
- · processing level: can adapt to existing nomenclature default is to use CODMAC levels (PDS3)

publisher id

obs title

bib reference

 calib level not the same definition/values

EPNcore — Product

(EPN-TAP parameter)

- granule_uid : unique id for granule in service = 1 granule per row
- obs_id: original observation id, to cross-reference granules with various processing, but from the same original observation
- granule_gid: granule group id for granules that have same processing, coordinate system, etc, to cross-reference granules with comparable processing
- dataproduct_type:
 predefined list: im (image), ma (map), pr (profile), sp (spectrum),
 ds (dynamic spectrum), sc (spectral cube), vo (volume),
 mo (movie), cu (cube), ts (time series), ca (catalogue),
 ci (catalogue item), sv (spatial vector), ev (event)
- instrument_host_name: spacecraft of observatory name (archive names recommended)
- instrument_name:
 name of instrument (archive names recommended)
- measurement_type: ucd - allows searching by physical quantity

- obs_publisher_did? definition are alike
- obs_id same definition
- obs_collection?
 very similar definition
- dataproduct_type
 predefined list: image, cube, spectrum, sed,
 timeseries, visibility, or event.
 same name, but not the same list!
- facility_name from VODataService (but no constraints)
- · instrument name
- o_ucd

EPNcore — Target

(EPN-TAP parameter)

• target_name:

Solar System target(s) or exoplanet name from IAU standard lists or sample / meteorite name or ID

· target_class:

predefined list: planet, satellite, dwarf_planet, asteroid, comet, exoplanet, sample, sky, star, interplanetary_medium, calibration, spacecraft, spacejunk

- alt_target_name:other names of the target(s)
- feature_name: local name on target (e.g., crater, region...)
- target_region:
 type of region on target (atmosphere, surface...)

- target_name (which standard?)
- target_class(list to be defined?)

EPNcore — Time

(EPN-TAP parameter - optional in blue)

- time_min, time_max:
 Time range min and max value of data product
 Unit: JD
- time_exp_min, time_exp_max:
 Exposure time min and max values of data product
 Unit: seconds
- time_sampling_step_min, time_sampling_step_max:
 Sampling step min and max values of data product Unit: seconds
- time_scale:UTC, except for modeling
- time_origin:
 Where time is measured (important for space obs)

- t_min t_max same definition, but in MJD
- t_exptime single valued (no min/max)
- t_resolutionsingle valued (no min/max)

EPNcore — Spectral

(EPN-TAP parameter)

- spectral_range_min,
 spectral_range_max:
 Spectral range min and max value Unit: Hz
- spectral_resolution_min,
 spectral_resolution_max:
 Filter bandwidth min and max values
 Unit: Hz
 (will evolve to resolving power f / Δf)
- spectral_sampling_step_min, spectral_sampling_step_max:
 Spectral sampling min and max values Unit: Hz

- em_min em_max same definition, but unit in meter
- em_res_power not the same definition relative resolution here: $|\lambda/\Delta\lambda| = |f/\Delta f|$

EPNcore — Spatial

(EPN-TAP parameter)

(equivalent in ObsCore)

s resolution

· spatial frame type: none / celestial / body / cartesian / cylindrical / spherical

· c1 min, c2 min, c3 min, • s ra c1_max, c2_max, c3_max: s dec Spatial ranges min and max values on 3 axes, as s fov defined in spatial frame type Unit: degrees or km / au

· c1 resol min, c2 resol min, c3 resol min c1_resol_max, c2_resol_max, c3_resol_max: Spatial resolutions min and max values Unit: degrees or km / au

spatial coordinate description

full identification of frame with std ID - TBD

- · s region: STC-S string (or MOC?), ambiguous
- spatial origin :

s region

origin of frame in case of ambiguity

EPNcore — Illumination & geometry

(EPN-TAP parameter) (no equivalent in ObsCore)

incidence_min ,incidence max :

The incidence angle parameters define the upper and lower bounds of the incidence angle variation in the data (also known as Solar Zenithal Angle)

Unit: degrees (0° = normal to surface)

emergence_min, emergence_max:

The emergence angle parameters define the upper and lower bounds of the emergence angle variation in the data (viewing angle) Unit: degrees (0° = normal to surface)

phase_min ,phase max :

The phase angle parameters define the upper and lower bounds of the phase angle variation in the data
Unit: degrees (0° = opposition)

solar_longitude_min/max:

~ true anomaly counted from N spring equinox position defines the season on the target at time of observation Unit: degrees ($0^{\circ} = N$ spring equinox)

local_time_min/max:

Local time on FoV at time of observation Unit: degrees (0° = midnight)

- target_distance_min/max:
 distance to observed FoV at time of observation
- target_time_min/max

time at target location, to handle simultaneous observations from different locations in the Solar system

EPNcore — Access

(EPN-TAP parameter)

· access_url:

URL used to access the data may be a web service

access_format

VO-compliant formats preferred, but anything is acceptable to accommodate archive data: VOTable, Fits, CSV, ASCII, PDS (+ standard image formats), etc

· access estsize:

approximate size of data file Unit: kB

· file name:

name of the data file, in case this bears information

thumbnail url

URL used to get a preview of data as a small sized image

(equivalent in ObsCore)

- · access url
- · access_format

· access estsize

Open issues

- Vocabulary will keep growing with more extensions. Need for more UCDs!
- Datalink may be difficult to handle (need to grab links provided in dl tables)
- Some flexibility expected in ADQL? Non-ambiguous support of contours, etc.
- Extra standards required:
 - Target names (small bodies) => IAU / SSODNet service
 - Coordinate systems => being listed. Body-fixed frames need be OGS compliant
 - Observatory / space mission catalogues and ID => current VO project

Work Plan

- EPN-TAP document submitted as WD to DAL
- XSD schema was issued for v1.0, to be updated
- EPN-TAP services are declared in the registry with an ivo-id, to be reviewed (there are remnants of older versions)
- TAP clients can query all services
- optimized clients: VESPA portal; EPN-TAP lib in CASSIS and 3Dview
- TAP validator at VOParis / PADC has an EPN-TAP mode
- Existing mixin in DaCHS, to be checked and completed
- Plans for a future v2.1, would imply major upgrade of existing services (and clients?)